4,974 research outputs found

    A beam search approach to solve the convex irregular bin packing problem with guillotine cuts

    Get PDF
    This paper presents a two dimensional convex irregular bin packing problem with guillotine cuts. The problem combines the challenges of tackling the complexity of packing irregular pieces, guaranteeing guillotine cuts that are not always orthogonal to the edges of the bin, and allocating pieces to bins that are not necessarily of the same size. This problem is known as a two-dimensional multi bin size bin packing problem with convex irregular pieces and guillotine cuts. Since pieces are separated by means of guillotine cuts, our study is restricted to convex pieces.A beam search algorithm is described, which is successfully applied to both the multi and single bin size instances. The algorithm is competitive with the results reported in the literature for the single bin size problem and provides the first results for the multi bin size problem

    Constraint programming methods in three-dimensional container packing

    Full text link
    Cutting and packing problems are present in many, at first glance unconnected, areas, therefore it's beneficial to have a good understanding of their underlying structure, to select proper techniques for finding solutions. Cutting and packing problems are a class of combinatorial problems in which there are specified two classes of objects: big and small items and the task is to place the small items within big items. Even in the 1-dimensional case, bin-packing is strongly NP-hard (Garey 1978), which suggests, that exact solutions may not be found in a reasonable time for bigger instances. In the literature, there are presented many various approaches to packing problems, e.g. mixed-integer programming, approximation algorithms, heuristic solutions, and local search algorithms, including metaheuristic approaches like Tabu Search or Simulated Annealing. The main goal of this work is to review existing solutions, survey the variants arising from the industry applications, present a solution based on constraint programming and compare its performance with the results in the literature. Optimization with constraint programming is a method searching for the global optima, hence it may require a higher workload compared to the heuristic and local search approaches, which may finish in a local optimum. The performance of the presented model will be measured on test data used in the literature, which were used in many articles presenting a variety of approaches to three-dimensional container packing, which will allow us to compare the efficiency of the constraint programming model with other methods used in the operational research

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Structural characterization and statistical-mechanical model of epidermal patterns

    Full text link
    In proliferating epithelia of mammalian skin, cells of irregular polygonal-like shapes pack into complex nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct and Fourier spaces of the cell centroids in the early stages of embryonic development show structural directional dependence, while in the late stages the patterns tend towards statistically isotropic states. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-ranged soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. Our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. We discuss ways in which our model might be extended so as to better understand morphogenesis (in particular the emergence of planar cell polarity), wound-healing, and disease progression processes in skin, and how it could be applied to the design of synthetic tissues

    An anytime tree search algorithm for two-dimensional two- and three-staged guillotine packing problems

    Full text link
    [libralesso_anytime_2020] proposed an anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem (https://www.roadef.org/challenge/2018/en/index.php). The resulting program was ranked first among 64 participants. In this article, we generalize it and show that it is not only effective for the specific problem it was originally designed for, but is also very competitive and even returns state-of-the-art solutions on a large variety of Cutting and Packing problems from the literature. We adapted the algorithm for two-dimensional Bin Packing, Multiple Knapsack, and Strip Packing Problems, with two- or three-staged exact or non-exact guillotine cuts, the orientation of the first cut being imposed or not, and with or without item rotation. The combination of efficiency, ability to provide good solutions fast, simplicity and versatility makes it particularly suited for industrial applications, which require quickly developing algorithms implementing several business-specific constraints. The algorithm is implemented in a new software package called PackingSolver
    corecore