19,999 research outputs found

    Perseus: Randomized Point-based Value Iteration for POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) form an attractive and principled framework for agent planning under uncertainty. Point-based approximate techniques for POMDPs compute a policy based on a finite set of points collected in advance from the agents belief space. We present a randomized point-based value iteration algorithm called Perseus. The algorithm performs approximate value backup stages, ensuring that in each backup stage the value of each point in the belief set is improved; the key observation is that a single backup may improve the value of many belief points. Contrary to other point-based methods, Perseus backs up only a (randomly selected) subset of points in the belief set, sufficient for improving the value of each belief point in the set. We show how the same idea can be extended to dealing with continuous action spaces. Experimental results show the potential of Perseus in large scale POMDP problems

    Dynamic Non-Bayesian Decision Making

    Full text link
    The model of a non-Bayesian agent who faces a repeated game with incomplete information against Nature is an appropriate tool for modeling general agent-environment interactions. In such a model the environment state (controlled by Nature) may change arbitrarily, and the feedback/reward function is initially unknown. The agent is not Bayesian, that is he does not form a prior probability neither on the state selection strategy of Nature, nor on his reward function. A policy for the agent is a function which assigns an action to every history of observations and actions. Two basic feedback structures are considered. In one of them -- the perfect monitoring case -- the agent is able to observe the previous environment state as part of his feedback, while in the other -- the imperfect monitoring case -- all that is available to the agent is the reward obtained. Both of these settings refer to partially observable processes, where the current environment state is unknown. Our main result refers to the competitive ratio criterion in the perfect monitoring case. We prove the existence of an efficient stochastic policy that ensures that the competitive ratio is obtained at almost all stages with an arbitrarily high probability, where efficiency is measured in terms of rate of convergence. It is further shown that such an optimal policy does not exist in the imperfect monitoring case. Moreover, it is proved that in the perfect monitoring case there does not exist a deterministic policy that satisfies our long run optimality criterion. In addition, we discuss the maxmin criterion and prove that a deterministic efficient optimal strategy does exist in the imperfect monitoring case under this criterion. Finally we show that our approach to long-run optimality can be viewed as qualitative, which distinguishes it from previous work in this area.Comment: See http://www.jair.org/ for any accompanying file

    Sensor Synthesis for POMDPs with Reachability Objectives

    Full text link
    Partially observable Markov decision processes (POMDPs) are widely used in probabilistic planning problems in which an agent interacts with an environment using noisy and imprecise sensors. We study a setting in which the sensors are only partially defined and the goal is to synthesize "weakest" additional sensors, such that in the resulting POMDP, there is a small-memory policy for the agent that almost-surely (with probability~1) satisfies a reachability objective. We show that the problem is NP-complete, and present a symbolic algorithm by encoding the problem into SAT instances. We illustrate trade-offs between the amount of memory of the policy and the number of additional sensors on a simple example. We have implemented our approach and consider three classical POMDP examples from the literature, and show that in all the examples the number of sensors can be significantly decreased (as compared to the existing solutions in the literature) without increasing the complexity of the policies.Comment: arXiv admin note: text overlap with arXiv:1511.0845
    • …
    corecore