3,986 research outputs found

    Computing Equilibria in Markets with Budget-Additive Utilities

    Get PDF
    We present the first analysis of Fisher markets with buyers that have budget-additive utility functions. Budget-additive utilities are elementary concave functions with numerous applications in online adword markets and revenue optimization problems. They extend the standard case of linear utilities and have been studied in a variety of other market models. In contrast to the frequently studied CES utilities, they have a global satiation point which can imply multiple market equilibria with quite different characteristics. Our main result is an efficient combinatorial algorithm to compute a market equilibrium with a Pareto-optimal allocation of goods. It relies on a new descending-price approach and, as a special case, also implies a novel combinatorial algorithm for computing a market equilibrium in linear Fisher markets. We complement these positive results with a number of hardness results for related computational questions. We prove that it is NP-hard to compute a market equilibrium that maximizes social welfare, and it is PPAD-hard to find any market equilibrium with utility functions with separate satiation points for each buyer and each good.Comment: 21 page

    Welfare and Revenue Guarantees for Competitive Bundling Equilibrium

    Full text link
    We study equilibria of markets with mm heterogeneous indivisible goods and nn consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the widespread use of bundling in real-life markets, we study its role as a stabilizing and coordinating device by considering the notion of \emph{competitive bundling equilibrium}: a competitive equilibrium over the market induced by partitioning the goods for sale into fixed bundles. Compared to other equilibrium concepts involving bundles, this notion has the advantage of simulatneous succinctness (O(m)O(m) prices) and market clearance. Our first set of results concern welfare guarantees. We show that in markets where consumers care only about the number of goods they receive (known as multi-unit or homogeneous markets), even in the presence of complementarities, there always exists a competitive bundling equilibrium that guarantees a logarithmic fraction of the optimal welfare, and this guarantee is tight. We also establish non-trivial welfare guarantees for general markets, two-consumer markets, and markets where the consumer valuations are additive up to a fixed budget (budget-additive). Our second set of results concern revenue guarantees. Motivated by the fact that the revenue extracted in a standard competitive equilibrium may be zero (even with simple unit-demand consumers), we show that for natural subclasses of gross substitutes valuations, there always exists a competitive bundling equilibrium that extracts a logarithmic fraction of the optimal welfare, and this guarantee is tight. The notion of competitive bundling equilibrium can thus be useful even in markets which possess a standard competitive equilibrium

    Sponsored Search, Market Equilibria, and the Hungarian Method

    Full text link
    Matching markets play a prominent role in economic theory. A prime example of such a market is the sponsored search market. Here, as in other markets of that kind, market equilibria correspond to feasible, envy free, and bidder optimal outcomes. For settings without budgets such an outcome always exists and can be computed in polynomial-time by the so-called Hungarian Method. Moreover, every mechanism that computes such an outcome is incentive compatible. We show that the Hungarian Method can be modified so that it finds a feasible, envy free, and bidder optimal outcome for settings with budgets. We also show that in settings with budgets no mechanism that computes such an outcome can be incentive compatible for all inputs. For inputs in general position, however, the presented mechanism---as any other mechanism that computes such an outcome for settings with budgets---is incentive compatible

    Lottery pricing equilibria

    Get PDF
    We extend the notion of Combinatorial Walrasian Equilibrium, as defined by Feldman et al. [2013], to settings with budgets. When agents have budgets, the maximum social welfare as traditionally defined is not a suitable benchmark since it is overly optimistic. This motivated the liquid welfare of [Dobzinski and Paes Leme 2014] as an alternative. Observing that no combinatorial Walrasian equilibrium guarantees a non-zero fraction of the maximum liquid welfare in the absence of randomization, we instead work with randomized allocations and extend the notions of liquid welfare and Combinatorial Walrasian Equilibrium accordingly. Our generalization of the Combinatorial Walrasian Equilibrium prices lotteries over bundles of items rather than bundles, and we term it a lottery pricing equilibrium. Our results are two-fold. First, we exhibit an efficient algorithm which turns a randomized allocation with liquid expected welfare W into a lottery pricing equilibrium with liquid expected welfare 3-āˆš5/2 W (ā‰ˆ 0.3819-W). Next, given access to a demand oracle and an Ī±-approximate oblivious rounding algorithm for the configuration linear program for the welfare maximization problem, we show how to efficiently compute a randomized allocation which is (a) supported on polynomially-many deterministic allocations and (b) obtains [nearly] an Ī± fraction of the optimal liquid expected welfare. In the case of subadditive valuations, combining both results yields an efficient algorithm which computes a lottery pricing equilibrium obtaining a constant fraction of the optimal liquid expected welfare. Ā© Copyright 2016 ACM

    Politics and efficiency of separating capital and ordinary Government budgets

    Get PDF
    We analyze the democratic politics and competitive economics of a ā€˜golden ruleā€™ that separates capital and ordinary account budgets and allows a government to issue debt to finance only capital items. Many national governments followed this rule in the 18th and 19th centuries and most U.S. states do today. We study an economy with a growing population of overlapping generations of long-lived but mortal agents. Each period, majorities choose durable and nondurable public goods. In a special limiting case with demographics that make Ricardian equivalence prevail, the golden rule does nothing to promote efficiency. But when the demographics imply even moderate departures from Ricardian equivalence, imposing the golden rule substantially improves the efficiency of democratically chosen allocations of public goods. We use some examples calibrated to U.S. demographic data and find greater benefits from adopting the golden rule at the state level or with 19th century demographics than under current national demographicsDemography ; Budget

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market
    • ā€¦
    corecore