7,389 research outputs found

    The use of multilayer network analysis in animal behaviour

    Get PDF
    Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as \emph{multilayer network analysis}, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour as connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population, and evolutionary levels of organisation. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.Comment: Thoroughly revised; title changed slightl

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Modeling the emergence of polarity patterns for the intercellular transport of auxin in plants

    Full text link
    The hormone auxin is actively transported throughout plants via protein machineries including the dedicated transporter known as PIN. The associated transport is ordered with nearby cells driving auxin flux in similar directions. Here we provide a model of both the auxin transport and of the dynamics of cellular polarisation based on flux sensing. Our main findings are: (i) spontaneous intracellular PIN polarisation arises if PIN recycling dynamics are sufficiently non-linear, (ii) there is no need for an auxin concentration gradient, and (iii) ordered multi-cellular patterns of PIN polarisation are favored by molecular noise.Comment: 17 pages and 9 figures (Main Text), 9 pages and 4 figures (Supplementary Material), revised version with some rearrangement

    Clusters of firms in space and time

    Get PDF
    The use of the K-functions (Ripley, 1977) has become recently popular in the analysis of the spatial pattern of firms. It was first introduced in the economic literature by Arbia and Espa (1996) and then popularized by Marcon and Puech (2003), Quah and Simpson (2003), Duranton and Overman (2005) and Arbia et al. (2008). In particular in Arbia et al. (2008) we used Ripley’s K-functions as instruments to study the inter-sectoral co-agglomeration pattern of firms in a single moment of time. All this researches have followed a static approach, disregarding the time dimension. Temporal dynamics, on the other hand, play a crucial role in understanding the economic and social phenomena, particularly when referring to the analysis of the individual choices leading to the observed clusters of economic activities. With respect to the contributions previously appeared in the literature, this paper uncovers the process of firm demography by studying the dynamics of localization through space-time K-functions. The empirical part of the paper will focus on the study of the long run localization of firms in the area of Rome (Italy), by concentrating on the ICT sector data collected by the Italian Industrial Union in the period 1920- 2005.Agglomeration, Non-parametric measures; Space-time K-functions, Spatial clusters, Spatial econometrics.

    Technological diversification

    Get PDF
    Why is GDP so much more volatile in poor countries than in rich ones? To answer this question, we propose a theory of technological diversification. Production makes use of different input varieties, which are subject to imperfectly correlated shocks. As in endogenous growth models, technological progress increases the number of varieties, raising average productivity. In our model, the expansion in the number of varieties provides diversification benefits against variety-specific shocks and it hence lowers the volatility of output. Technological complexity evolves endogenously in response to profit incentives. Complexity (and hence output stability) is positively related with the development of the country, the comparative advantage of the sector, and the sector’s skill and technology intensity. Using sector-level data for a broad sample of countries, we provide extensive empirical evidence confirming the cross-country and cross-sectoral predictions of the model. JEL Classification: O11, O14, O41, E32diversification, economic fluctuations, specialization, technology choice
    • 

    corecore