81 research outputs found

    Isoperimetric Partitioning: A New Algorithm for Graph Partitioning

    Full text link
    Temporal structure is skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefronatal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables such as time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over- shoot the amounts needed for precise acts. Each context of action may require a different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive patterns of analog signals. From some parts of the cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine design to serve the lowest and highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between leveels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.National Institute of Mental Health (R01 DC02582

    Adaptive Neural Models of Queuing and Timing in Fluent Action

    Full text link
    Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.National Institute of Mental Health (R01 DC02852

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits

    Slowness learning for curiosity-driven agents

    Get PDF
    In the absence of external guidance, how can a robot learn to map the many raw pixels of high-dimensional visual inputs to useful action sequences? I study methods that achieve this by making robots self-motivated (curious) to continually build compact representations of sensory inputs that encode different aspects of the changing environment. Previous curiosity-based agents acquired skills by associating intrinsic rewards with world model improvements, and used reinforcement learning (RL) to learn how to get these intrinsic rewards. But unlike in previous implementations, I consider streams of high-dimensional visual inputs, where the world model is a set of compact low-dimensional representations of the high-dimensional inputs. To learn these representations, I use the slowness learning principle, which states that the underlying causes of the changing sensory inputs vary on a much slower time scale than the observed sensory inputs. The representations learned through the slowness learning principle are called slow features (SFs). Slow features have been shown to be useful for RL, since they capture the underlying transition process by extracting spatio-temporal regularities in the raw sensory inputs. However, existing techniques that learn slow features are not readily applicable to curiosity-driven online learning agents, as they estimate computationally expensive covariance matrices from the data via batch processing. The first contribution called the incremental SFA (IncSFA), is a low-complexity, online algorithm that extracts slow features without storing any input data or estimating costly covariance matrices, thereby making it suitable to be used for several online learning applications. However, IncSFA gradually forgets previously learned representations whenever the statistics of the input change. In open-ended online learning, it becomes essential to store learned representations to avoid re- learning previously learned inputs. The second contribution is an online active modular IncSFA algorithm called the curiosity-driven modular incremental slow feature analysis (Curious Dr. MISFA). Curious Dr. MISFA addresses the forgetting problem faced by IncSFA and learns expert slow feature abstractions in order from least to most costly, with theoretical guarantees. The third contribution uses the Curious Dr. MISFA algorithm in a continual curiosity-driven skill acquisition framework that enables robots to acquire, store, and re-use both abstractions and skills in an online and continual manner. I provide (a) a formal analysis of the working of the proposed algorithms; (b) compare them to the existing methods; and (c) use the iCub humanoid robot to demonstrate their application in real-world environments. These contributions together demonstrate that the online implementations of slowness learning make it suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills that map the many raw pixels of high-dimensional images to multiple sets of action sequences

    Drama, a connectionist model for robot learning: experiments on grounding communication through imitation in autonomous robots

    Get PDF
    The present dissertation addresses problems related to robot learning from demonstra¬ tion. It presents the building of a connectionist architecture, which provides the robot with the necessary cognitive and behavioural mechanisms for learning a synthetic lan¬ guage taught by an external teacher agent. This thesis considers three main issues: 1) learning of spatio-temporal invariance in a dynamic noisy environment, 2) symbol grounding of a robot's actions and perceptions, 3) development of a common symbolic representation of the world by heterogeneous agents.We build our approach on the assumption that grounding of symbolic communication creates constraints not only on the cognitive capabilities of the agent but also and especially on its behavioural capacities. Behavioural skills, such as imitation, which allow the agent to co-ordinate its actionn to that of the teacher agent, are required aside to general cognitive abilities of associativity, in order to constrain the agent's attention to making relevant perceptions, onto which it grounds the teacher agent's symbolic expression. In addition, the agent should be provided with the cognitive capacity for extracting spatial and temporal invariance in the continuous flow of its perceptions. Based on this requirement, we develop a connectionist architecture for learning time series. The model is a Dynamical Recurrent Associative Memory Architecture, called DRAMA. It is a fully connected recurrent neural network using Hebbian update rules. Learning is dynamic and unsupervised. The performance of the architecture is analysed theoretically, through numerical simulations and through physical and simulated robotic experiments. Training of the network is computationally fast and inexpensive, which allows its implementation for real time computation and on-line learning in a inexpensive hardware system. Robotic experiments are carried out with different learning tasks involving recognition of spatial and temporal invariance, namely landmark recognition and prediction of perception-action sequence in maze travelling.The architecture is applied to experiments on robot learning by imitation. A learner robot is taught by a teacher agent, a human instructor and another robot, a vocabulary to describe its perceptions and actions. The experiments are based on an imitative strategy, whereby the learner robot reproduces the teacher's actions. While imitating the teacher's movements, the learner robot makes similar proprio and exteroceptions to those of the teacher. The learner robot grounds the teacher's words onto the set of common perceptions they share. We carry out experiments in simulated and physical environments, using different robotic set-ups, increasing gradually the complexity of the task. In a first set of experiments, we study transmission of a vocabulary to designate actions and perception of a robot. Further, we carry out simulation studies, in which we investigate transmission and use of the vocabulary among a group of robotic agents. In a third set of experiments, we investigate learning sequences of the robot's perceptions, while wandering in a physically constrained environment. Finally, we present the implementation of DRAMA in Robota, a doll-like robot, which can imitate the arms and head movements of a human instructor. Through this imitative game, Robota is taught to perform and label dance patterns. Further, Robota is taught a basic language, including a lexicon and syntactical rules for the combination of words of the lexicon, to describe its actions and perception of touch onto its body

    Brain Learning, Attention, and Consciousness

    Full text link
    The processes whereby our brains continue to learn about a changing world in a stable fashion throughout life are proposed to lead to conscious experiences. These processes include the learning of top-down expectations, the matching of these expectations against bottom-up data, the focusing of attention upon the expected clusters of information, and the development of resonant states between bottom-up and top-down processes as they reach an attentive consensus between what is expected and what is there in the outside world. It is suggested that all conscious states in the brain are resonant states, and that these resonant states trigger learning of sensory and cognitive representations. The model which summarize these concepts are therefore called Adaptive Resonance Theory, or ART, models. Psychophysical and neurobiological data in support of ART are presented from early vision, visual object recognition, auditory streaming, variable-rate speech perception, somatosensory perception, and cognitive-emotional interactions, among others. It is noted that ART mechanisms seem to be operative at all levels of the visual system, and it is proposed how these mechanisms are realized by known laminar circuits of visual cortex. It is predicted that the same circuit realization of ART mechanisms will be found in the laminar circuits of all sensory and cognitive neocortex. Concepts and data are summarized concerning how some visual percepts may be visibly, or modally, perceived, whereas amoral percepts may be consciously recognized even though they are perceptually invisible. It is also suggested that sensory and cognitive processing in the What processing stream of the brain obey top-down matching and learning laws that arc often complementary to those used for spatial and motor processing in the brain's Where processing stream. This enables our sensory and cognitive representations to maintain their stability a.s we learn more about the world, while allowing spatial and motor representations to forget learned maps and gains that are no longer appropriate as our bodies develop and grow from infanthood to adulthood. Procedural memories are proposed to be unconscious because the inhibitory matching process that supports these spatial and motor processes cannot lead to resonance.Defense Advance Research Projects Agency; Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657); National Science Foundation (IRI-97-20333

    Dynamic Scene Classification: Learning Motion Descriptors with Slow Features Analysis

    Full text link
    corecore