10,545 research outputs found

    Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure

    Full text link
    EXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Workshop funded by the Alfred P. Sloan Foundatio

    Competitive Charging Station Pricing for Plug-in Electric Vehicles

    Full text link
    This paper considers the problem of charging station pricing and plug-in electric vehicles (PEVs) station selection. When a PEV needs to be charged, it selects a charging station by considering the charging prices, waiting times, and travel distances. Each charging station optimizes its charging price based on the prediction of the PEVs' charging station selection decisions and the other station's pricing decision, in order to maximize its profit. To obtain insights of such a highly coupled system, we consider a one-dimensional system with two competing charging stations and Poisson arriving PEVs. We propose a multi-leader-multi-follower Stackelberg game model, in which the charging stations (leaders) announce their charging prices in Stage I, and the PEVs (followers) make their charging station selections in Stage II. We show that there always exists a unique charging station selection equilibrium in Stage II, and such equilibrium depends on the charging stations' service capacities and the price difference between them. We then characterize the sufficient conditions for the existence and uniqueness of the pricing equilibrium in Stage I. We also develop a low complexity algorithm that efficiently computes the pricing equilibrium and the subgame perfect equilibrium of the two-stage Stackelberg game.Comment: 15 pages, 21 figure

    Vehicle-to-grid regulation based on a dynamic simulation of mobility behavior

    Get PDF
    This study establishes a new approach to analyzing the economic impacts of vehicle-to-grid (V2G) regulation by simulating the restrictions arising from un-predictable mobility requests by vehicle users. A case study for Germany using average daily values (in the following also called the "static" approach) and a dynamic simulation including different mobility use patterns are presented. Comparing the dynamic approach with the static approach reveals a significant difference in the power a vehicle can offer for regulation and provides insights into the necessary size of vehicle pools and the possible adaptations required in the regulation market to render V2G feasible. In a first step, the regulation of primary, secondary and tertiary control is ana-lyzed based on previous static methods used to investigate V2G and data from the four German regulation areas. It is shown that negative secondary control is economically the most beneficial for electric vehicles because it offers the high-est potential for charging with 'low-priced' energy from negative regulation. In a second step, a new method based on a Monte Carlo simulation using stochastic mobility behavior is applied to look at the negative secondary control market in more detail. Our simulation indicates that taking dynamic driving behavior into account results in a 40% reduction of the power available for regulation. Be-cause of the high value of power in the regulation market this finding has a strong impact on the resulting revenues. Further, we demonstrate that, for the data used, a pool size of 10,000 vehicles seems reasonable to balance the var-iation in driving behavior of each individual. In the case of the German regula-tion market, which uses monthly bids, a daily or hourly bid period is recom-mended. This adaptation would be necessary to provide individual regulation assuming that the vehicles are primarily used for mobility reasons and cannot deliver the same amount of power every hour of the week. --

    Fast Charging Stations: Simulating Entry and Location in a Game of Strategic Interaction [WP]

    Get PDF
    This paper uses a game of strategic interaction to simulate entry and location of fast charging stations for electric vehicles. It evaluates the equilibria obtained in terms of social welfare and firm spatial differentiation. Using Barcelona mobility survey, demographic data and the street graph we find that only at an electric vehicle penetration rate above 3% does a dense network of stations appear as the equilibrium outcome of a market with no fiscal transfers. We also find that price competition drives location differentiation measured not only in Euclidean distances but also in consumer travel distances

    Electric Vehicles: Rolling Over Barriers and Merging with Regulation

    Full text link
    Electric vehicles are merging into the mainstream of transportation. Although the technology still comprises a small fraction of the current market, it ismorewidely available due to competitivepricing, technological improvements, and available state and federal incentives. The benefits of electric vehicles include reduced fossil fuel emissions and associated climate change mitigation, new independence from oil-driven policies in foreignmarkets and international relations, and potential opportunities for increasing and complementing renewable energy electric resources. The risks of widespread electric vehicle deployment are largely thought to involve potential impacts on existingutility generation,distribution, and transmission systems and how the costs of any needed changes to these resources should be allocated among customers, including those not utilizing the technology. This Article argues that the potential risks of increased electric vehicle deployment can be tempered by targeted involvement of the state agencies tasked with regulating electricity, for example in requiring utilities to take the lead on public education and in mandating certain rate structures that minimize load impacts. It provides a road map for state agencies to answer the novel legal and policy questions posed by traveling vehicles as electric load, and also examines how state involvement can actually mitigate the barriers to further growth in this nascent sector by allowing increased opportunities for competition, information gathering and dissemination, andminimization of unnecessary regulatory burdens, particularly at this early stage of deployment. This Article makes the case that, given the scope of potential environmental and social benefits, state agencies can and should actively explore and develop policy mechanisms to integrate electric vehicle growth into the electric regulation space

    Government Clean Air Regulations and Tesla Motors

    Get PDF

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Fast Charging Stations: Simulating Entry and Location in a Game of Strategic Interaction

    Get PDF
    This paper uses a game of strategic interaction to simulate entry and location of fast charging stations for electric vehicles. It evaluates the equilibria obtained in terms of social welfare and firm spatial differentiation. Using Barcelona mobility survey, demographic data and the street graph we find that only at an electric vehicle penetration rate above 3% does a dense network of stations appear as the equilibrium outcome of a market with no fiscal transfers. We also find that price competition drives location differentiation measured not only in Euclidean distances but also in consumer travel distances
    • …
    corecore