735 research outputs found

    Constrained Phase Noise Estimation in OFDM Using Scattered Pilots Without Decision Feedback

    Full text link
    In this paper, we consider an OFDM radio link corrupted by oscillator phase noise in the receiver, namely the problem of estimating and compensating for the impairment. To lessen the computational burden and delay incurred onto the receiver, we estimate phase noise using only scattered pilot subcarriers, i.e., no tentative symbol decisions are used in obtaining and improving the phase noise estimate. In particular, the phase noise estimation problem is posed as an unconstrained optimization problem whose minimizer suffers from the so-called amplitude and phase estimation error. These errors arise due to receiver noise, estimation from limited scattered pilot subcarriers and estimation using a dimensionality reduction model. It is empirically shown that, at high signal-to-noise-ratios, the phase estimation error is small. To reduce the amplitude estimation error, we restrict the minimizer to be drawn from the so-called phase noise geometry set when minimizing the cost function. The resulting optimization problem is a non-convex program. However, using the S-procedure for quadratic equalities, we show that the optimal solution can be obtained by solving the convex dual problem. We also consider a less complex heuristic scheme that achieves the same objective of restricting the minimizer to the phase noise geometry set. Through simulations, we demonstrate improved coded bit-error-rate and phase noise estimation error performance when enforcing the phase noise geometry. For example, at high signal-to-noise-ratios, the probability density function of the phase noise estimation error exhibits thinner tails which results in lower bit-error-rate

    Interference Localization for Uplink OFDMA Systems in Presence of CFOs

    Full text link
    Multiple carrier frequency offsets (CFOs) present in the uplink of orthogonal frequency division multiple access (OFDMA) systems adversely affect subcarrier orthogonality and impose a serious performance loss. In this paper, we propose the application of time domain receiver windowing to concentrate the leakage caused by CFOs to a few adjacent subcarriers with almost no additional computational complexity. This allows us to approximate the interference matrix with a quasi-banded matrix by neglecting small elements outside a certain band which enables robust and computationally efficient signal detection. The proposed CFO compensation technique is applicable to all types of subcarrier assignment techniques. Simulation results show that the quasi-banded approximation of the interference matrix is accurate enough to provide almost the same bit error rate performance as that of the optimal solution. The excellent performance of our proposed method is also proven through running an experiment using our FPGA-based system setup.Comment: Accepted in IEEE WCNC 201

    Filtered OFDM systems, algorithms and performance analysis for 5G and beyond

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) system is a promising waveform for 5G and beyond to enable multi-service system and spectrum efficient network slicing. However, the performance for F-OFDM systems has not been systematically analyzed in literature. In this paper, we first establish a mathematical model for F-OFDM system and derive the conditions to achieve the interference-free one-tap channel equalization. In the practical cases (e.g., insufficient guard interval, asynchronous transmission, etc.), the analytical expressions for inter-symbol-interference (ISI), inter-carrier-interference (ICI) and adjacent-carrier-interference (ACI) are derived, where the last term is considered as one of the key factors for asynchronous transmissions. Based on the framework, an optimal power compensation matrix is derived to make all of the subcarriers having the same ergodic performance. Another key contribution of the paper is that we propose a multi-rate F-OFDM system to enable low complexity low cost communication scenarios such as narrow band Internet of Things (IoT), at the cost of generating inter-subband-interference (ISubBI). Low computational complexity algorithms are proposed to cancel the ISubBI. The result shows that the derived analytical expressions match the simulation results, and the proposed ISubBI cancelation algorithms can significantly save the original F-OFDM complexity (up to 100 times) without significant performance los
    • …
    corecore