707 research outputs found

    The design and control of an actively restrained passive mechatronic system for safety-critical applications

    Get PDF
    Development of manipulators that interact closely with humans has been a focus of research in fields such as robot-assisted surgery and haptic interfaces for many years. Recent introduction of powered surgical-assistant devices into the operating theatre has meant that robot manipulators have been required to interact with both patients and surgeons. Most of these manipulators are modified industrial robots. However, the use of high-powered mechanisms in the operating theatre could compromise safety of the patient, surgeon, and operating room staff. As a solution to the safety problem, the use of actively restrained passive arms has been proposed. Clutches or brakes at each joint are used to restrict the motion of the end-effector to restrain it to a pre-defined region or path. However, these devices have only had limited success in following pre-defined paths under human guidance. In this research, three major limitations of existing passive devices actively restrained are addressed. [Continues.

    A solution to the stick slip problem for an electropneumatic drive

    Get PDF
    International audienceThis paper describes a solution to the problem of "stick-slip" for an electro-pneumatic system. The phenomenon of "stick-slip" may appear during the mechanical static state when the position is fixed but the pressures continue to evolve in each actuator chamber, until exceeding the dry friction zone. The system is then in partial equilibrium. The idea to avoid this phenomenon is a switching control law between the tracking position control and the pressure regulation

    The solar array-induced disturbance of the Hubble Space Telescope pointing system

    Get PDF
    The investigation of the vibrational disturbances of the Hubble Space Telescope that were discovered soon after deployment in orbit is described in detail. It was found that the disturbances were particularly evident during orbital day-night crossings, and that the magnitudes of the disturbances were considerably larger than the design jitter requirements. This paper describes the process by which the vibrations were characterized and isolated to a particular mechanism. The analysis of the flight data and comparisons with computer simulation results showed that the source of the disturbances was the thermally driven deformation of the solar arrays in conjunction with frictional effects in the array mechanisms. The control system was successfully modified to attenuate the disturbances to tolerable levels pending mechanical and thermal redesign of the solar arrays. The new arrays were installed during the first space telescope servicing mission and, in combination with the enhanced control system algorithm, reduced the disturbances to satisfactory levels

    Modeling of the piezoelectric-driven stick-slip actuators

    Get PDF
    Previous studies show that the Piezoelectric-Driven Stick-Slip (PDSS) actuator is a promising device in many micropositioning and micromanipulation applications, where positioning with a long range and a high resolution is required. However, research in this area is still in its early stage and many issues remain to be addressed. One key issue is the representation of the dynamic displacement of the end-effector. It is known that such factors as the dynamics of piezoelectric actuator (PEA) and the presliding friction involved can significantly contribute to the displacement dynamics. Although this has been widely accepted, specific quantitative relationship between the aforementioned factors and the displacement dynamics has rarely been defined. The aim of this research is to develop a model to represent the displacement of the end-effecter of the PDSS actuators, in which both the presliding friction and the PEA dynamics are addressed. In order to represent the presliding friction, the models reported in literatures, including Dahl model [Olsson, et al., 1998], Reset Integrator model [Haessig and Friedland 1991], LuGre model [Canudas de Wit et al., 1995] and Elastoplastic model [Dupont et al., 2002] were reviewed and examined; and the LuGre model was chosen to be used because of its efficiency and simple formulation. On the other hand, a linear second order dynamic system model was employed to represent the combination of a PEA and its driven mechanism. On the basis of the pre-sliding friction model and the linearized PEA dynamics model, a model representative of the end-effector displacement of the PDSS actuator model was developed. In order to validate experimentally the developed PDSS model, a displacement measuring and data acquisition experiment system was established and a prototype was developed based on dSPACE and Simulink. On the prototyped actuator, two experiments were designed and conducted to identify the parameters involved in the model. One experiment is for the determination of the parameters of the second order system for the dynamics of the combination of a PEA and its driven mechanism; and other one is for the determination of the parameters of the chosen friction model. The identified parameters were then employed in the developed PDSS model to simulate the displacements and the results were compared with the experimental results that were obtained under the same operating conditions as the simulation. The comparison suggests that the model developed in this study is promising for the end-effector displacement of the PDSS actuator

    Proposal of a new simplified coulomb friction model applied to electrohydraulic servomechanisms

    Get PDF
    The design of electro-hydraulic servomechanisms characterized by high precision requirements generally needs adequate knowledge of its characteristics, and, in particular, of nonlinear phenomena. Among these, Coulomb's frictional forces acting on the mechanical elements in relative motion are critical to guarantee an implementation capable of respecting the accuracy requirements. The correct evaluation of this phenomenon allows understanding the behaviour of the physical system considered, to estimate its performance by implementing it in a simulation environment, and to design new devices taking into account the relative constraints. Accurate modelling and simulation of the considered system generally imply the use of high order dynamic models (typically, of second-order nonlinear or higher). However, under certain conditions, it is possible (and advisable) to simplify the mathematical structure of the numerical model, degrading it to a simple first-order, reducing its complexity and computational cost and, nevertheless, still obtaining results comparable with higher-order models. In this paper, the authors propose a new computational model capable of being implemented within these degraded numerical models, allowing them to simulate the main effects due to dry frictions (Coulomb's model). This first-order dynamic model is compared with the corresponding second-order ones to evaluate their performances in different scenarios
    • …
    corecore