142 research outputs found

    Compensation for Nonuniform Resolution Using Penalized-Likelihood Reconstruction in Space-Variant Imaging Systems

    Full text link
    Imaging systems that form estimates using a statistical approach generally yield images with nonuniform resolution properties. That is, the reconstructed images possess resolution properties marked by space-variant and/or anisotropic responses. We have previously developed a space-variant penalty for penalized-likelihood (PL) reconstruction that yields nearly uniform resolution properties . We demonstrated how to calculate this penalty efficiently and apply it to an idealized positron emission tomography (PET) system whose geometric response is space-invariant. In this paper, we demonstrate the efficient calculation and application of this penalty to space-variant systems. (The method is most appropriate when the system matrix has been precalculated.) We apply the penalty to a large field of view PET system where crystal penetration effects make the geometric response space-variant, and to a two-dimensional single photon emission computed tomography system whose detector responses are modeled by a depth-dependent Gaussian with linearly varying full-width at half-maximum. We perform a simulation study comparing reconstructions using our proposed PL approach with other reconstruction methods and demonstrate the relative resolution uniformity, and discuss tradeoffs among estimators that yield nearly uniform resolution. We observe similar noise performance for the PL and post-smoothed maximum-likelihood (ML) approaches with carefully matched resolution, so choosing one estimator over another should be made on other factors like computational complexity and convergence rates of the iterative reconstruction. Additionally, because the postsmoothed ML and the proposed PL approach can outperform one another in terms of resolution uniformity depending on the desired reconstruction resolution, we present and discuss a hybrid approach adopting both a penalty and post-smoothing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85975/1/Fessler63.pd

    Quadratic regularization design for fan beam transmission tomography

    Full text link
    Statistical methods for tomographic image reconstruction have shown considerable potential for improving image quality in X-ray CT. Penalized-likelihood (PL) image reconstruction methods require maximizing an objective function that is based on the log-likelihood of the sinogram measurements and on a roughness penalty function to control noise. In transmission tomography, PL methods (and MAP methods) based on conventional quadratic regularization functions lead to nonuniform and anisotropic spatial resolution, even for idealized shift-invariant imaging systems. We have previously addressed this problem for parallel-beam emission tomography by designing data-dependent, shift-variant regularizers that improve resolution uniformity. This paper extends those methods to the fan-beam geometry used in X-ray CT imaging. Simulation results demonstrate that the new method for regularization design requires very modest computation and leads to nearly uniform and isotropic spatial resolution in the fan-beam geometry when using quadratic regularization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85936/1/Fessler208.pd

    Analytical Approach to Regularization Design for Isotropic Spatial Resolution

    Full text link
    In emission tomography, conventional quadratic regularization methods lead to nonuniform and anisotropic spatial resolution in penalized-likelihood (or MAP) reconstructed images, even for idealized shift-invariant imaging systems. Previous methods for designing regularizers that improve resolution uniformity have used matrix manipulations and discrete Fourier transforms. This paper describes a simpler approach for designing data-dependent, shift-variant regularizers. We replace the usual discrete system models used in statistical image reconstruction with locally shift-invariant, continuous-space approximations, and design the regularizer using analytical Fourier transforms. We discretize the final analytical solution to compute the regularizer coefficients. This new approach requires even less computation than previous approaches that used FFTs, and provides additional insight into the problem of designing regularization methods to achieve uniform, isotropic spatial resolution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85963/1/Fessler187.pd

    Conjugate-Gradient Preconditioning Methods for Shift-Variant PET Image Reconstruction

    Full text link
    Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85979/1/Fessler85.pd

    Efficient Calculation of Resolution and Covariance for Penalized-Likelihood Reconstruction in Fully 3-D SPECT

    Full text link
    Resolution and covariance predictors have been derived previously for penalized-likelihood estimators. These predictors can provide accurate approximations to the local resolution properties and covariance functions for tomographic systems given a good estimate of the mean measurements. Although these predictors may be evaluated iteratively, circulant approximations are often made for practical computation times. However, when numerous evaluations are made repeatedly (as in penalty design or calculation of variance images), these predictors still require large amounts of computing time. In Stayman and Fessler (2000), we discussed methods for precomputing a large portion of the predictor for shift-invariant system geometries. In this paper, we generalize the efficient procedure discussed in Stayman and Fessler (2000) to shift-variant single photon emission computed tomography (SPECT) systems. This generalization relies on a new attenuation approximation and several observations on the symmetries in SPECT systems. These new general procedures apply to both two-dimensional and fully three-dimensional (3-D) SPECT models, that may be either precomputed and stored, or written in procedural form. We demonstrate the high accuracy of the predictions based on these methods using a simulated anthropomorphic phantom and fully 3-D SPECT system. The evaluation of these predictors requires significantly less computation time than traditional prediction techniques, once the system geometry specific precomputations have been made.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85992/1/Fessler54.pd

    Quadratic Regularization Design for 2-D CT

    Full text link
    Statistical methods for tomographic image reconstruction have improved noise and spatial resolution properties that may improve image quality in X-ray computed tomography (CT). Penalized weighted least squares (PWLS) methods using conventional quadratic regularization lead to nonuniform and anisotropic spatial resolution due to interactions between the weighting, which is necessary for good noise properties, and the regularizer. Previously, we addressed this problem for parallel-beam emission tomography using matrix algebra methods to design data-dependent, shift-variant regularizers that improve resolution uniformity. This paper develops a fast angular integral mostly analytical (AIMA) regularization design method for 2-D fan-beam X-ray CT imaging, for which parallel-beam tomography is a special case. Simulation results demonstrate that the new method for regularization design requires very modest computation and leads to nearly uniform and isotropic spatial resolution in transmission tomography when using quadratic regularization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85858/1/Fessler18.pd

    Fast Methods for Approximation of Resolution and Covariance for SPECT

    Full text link
    Resolution and covariance predictors have been derived previously for penalized-likelihood estimators. These predictors can provide accurate approximations to the local resolution properties and covariance functions for tomographic systems given a good estimate of the mean measurements. However, when numerous evaluations are made repeatedly (as in penalty design or calculation of variance images), these predictors still require large amounts of computing time. In, we discussed methods for precomputing a large portion of the predictor for shift-invariant system geometries. In this paper, we generalize the efficient procedure discussed in to shift-variant single photon emission computed tomography (SPECT) systems. This generalization relies on a new attenuation approximation and several observations on the symmetries in SPECT systems. These new general procedures apply to both 2D and fully-3D SPECT models, that may be either precomputed and stored, or written in procedural form.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86005/1/Fessler180.pd

    Fast joint reconstruction of dynamic R2∗R_2^* and field maps in functional MRI.

    Full text link
    Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is conventionally done by reconstructing T2 * -weighted images. However, since the images are unitless they are nonquantifiable in terms of important physiological parameters. An alternative approach is to reconstruct R2 * maps which are quantifiable and have comparable BOLD contrast as T2* -weighted images. However, conventional R2 * mapping involves long readouts and ignores relaxation during readout. Another problem with fMRI imaging is temporal drift/fluctuations in off-resonance. Conventionally, a field map is collected at the start of the fMRI study to correct for off-resonance, ignoring any temporal changes. Here, we propose a new fast regularized iterative algorithm that jointly reconstructs R2 * and field maps for all time frames in fMRI data. To accelerate the algorithm we linearize the MR signal model, enabling the use of fast regularized iterative reconstruction methods. The regularizer was designed to account for the different resolution properties of both R2 * and field maps and provide uniform spatial resolution. For fMRI data with the same temporal frame rate as data collected for T2 * -weighted imaging the resulting R2 * maps performed comparably to T2 * -weighted images in activation detection while also correcting for spatially global and local temporal changes in off-resonance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86002/1/Fessler23.pd

    Statistical Sinogram Restoration in Dual-Energy CT for PET Attenuation Correction

    Full text link
    Dual-energy (DE) X-ray computed tomography (CT) has been found useful in various applications. In medical imaging, one promising application is using low-dose DECT for attenuation correction in positron emission tomography (PET). Existing approaches to sinogram material decomposition ignore noise characteristics and are based on logarithmic transforms, producing noisy component sinogram estimates for low-dose DECT. In this paper, we propose two novel sinogram restoration methods based on statistical models: penalized weighted least square (PWLS) and penalized likelihood (PL), yielding less noisy component sinogram estimates for low-dose DECT than classical methods. The proposed methods consequently provide more precise attenuation correction of the PET emission images than do previous methods for sinogram material decomposition with DECT. We report simulations that compare the proposed techniques and existing approaches.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85900/1/Fessler11.pd
    • …
    corecore