16 research outputs found

    Parameter estimation of systems with deadzone and deadband and emulation using xPC Target

    Get PDF
    The first paper presents a new approach for online parameter estimation using multiple recursive least squares estimations implemented simultaneously to determine system model parameters, as well as a deadzone and/or deadband. the online adaptive estimation scheme was verified in simulation using MATLAB Simulink and verified experimentally for a DC motor driven cart, an electro-hydraulic pilot valve system, and a free cart loosely coupled to a DC motor driven cart by a pin that fits loosely in a slot...The second paper demonstrates the use of the Mathworks xPC Target environment for validation of a control system and emulation of a physical system using real-time code auto-generated from a simulation environment. A Master/Slave control system is developed for a hydraulic test stand --Abstract, page iv

    Self tuning control applied to heating systems.

    Get PDF

    A valve stiction tolerant formulation of MPC for industrial processes

    Get PDF
    This paper presents three different formulations of MPC to face static friction in control valves for industrial processes. A pure linear formulation, a stiction embedding structure, and a stiction inversion controller are designed. The controllers are derived for SISO systems with linear process dynamics, where valve stiction is the only nonlinearity present in the control loop. A novel smoothed stiction model is introduced to improve and fasten the dynamic optimization module of stiction embedding MPC. A stiction compensation method is revised and used as a warm-start to build a suitable trajectory for the predictive controller. The different MPC formulations are tested and compared on some simulation examples

    Model predictive control design for multivariable processes in the presence of valve stiction

    Get PDF
    This paper presents different formulations of Model Predictive Control (MPC) to handle static friction in control valves for industrial processes. A fully unaware formulation, a stiction embedding structure, and a stiction inversion controller are considered. These controllers are applied to multivariable systems, with linear and nonlinear process dynamics. A semiphysical model is used for valve stiction dynamics and the corresponding inverse model is derived and used within the stiction inversion controller. The two-move stiction compensation method is revised and used as warm-start to build a feasible trajectory for the MPC optimal control problem. Some appropriate choices of objective functions and constraints are used with the aim of improving performance in set-points tracking. The different MPC formulations are reviewed, compared, and tested on several simulation examples. Stiction embedding MPC proves to guarantee good performance in set-points tracking and also stiction compensation, at the expense of a lower robustness with respect to other two formulations

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2-D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. [Continues.

    A Multi-Parameter Empirical Model For Mesophilic Anaerobic Digestion

    Get PDF
    Anaerobic digestion, which is the process by which bacteria breakdown organic matter to produce biogas (renewable energy source) and digestate (biofertiliser) in the absence of oxygen, proves to be the ideal concept not only for sustainable energy provision but also for effective organic waste management. However, the production amount of biogas to keep up with the global demand is limited by the underperformance in the system implementing the AD process. This underperformance is due to the difficulty in obtaining and maintaining the optimal operating parameters/states for anaerobic bacteria to thrive with regards to attaining a specific critical population number, which results in maximising the biogas production. This problem continues to exist as a result of insufficient knowledge of the interactions between the operating parameters and bacterial community. In addition, the lack of sufficient knowledge of the composition of bacterial groups that varies with changes in the operating parameters such as temperature, substrate and retention time. Without sufficient knowledge of the overall impact of the physico-environmental operating parameters on anaerobic bacterial growth and composition, significant improvement of biogas production may be difficult to attain. In order to mitigate this problem, this study has presented a nonlinear multi-parameter system modelling of mesophilic AD. It utilised raw data sets generated from laboratory experimentation of the influence of four operating parameters, temperature, pH, mixing speed and pressure on biogas and methane production, signifying that this is a multiple input single output (MISO) system. Due to the nonlinear characteristics of the data, the nonlinear black-box modelling technique is applied. The modelling is performed in MATLAB through System Identification approach. Two nonlinear model structures, autoregressive with exogenous input (NARX) and Hammerstein-Wiener (NLHW) with different nonlinearity estimators and model orders are chosen by trial and error and utilised to estimate the models. The performance of the models is determined by comparing the simulated outputs of the estimated models and the output in the validation data. The approach is used to validate the estimated models by checking how well the simulated output of the models fits the measured output. The best models for biogas and methane production are chosen by comparing the outputs of the best NARX and NLHW models (each for biogas and methane production), and the validation data, as well as utilising the Akaike information criterion to measure the quality of each model relative to each of the other models. The NLHW models mhw2 and mhws2 are chosen for biogas and methane production, respectively. The identified NLHW models mhw2 and mhws2 represent the behaviour of the production of biogas and methane, respectively, from mesophilic AD. Among all the candidate models studied, the nonlinear models provide a superior reproduction of the experimental data over the whole analysed period. Furthermore, the models constructed in this study cannot be used for scale-up purpose because they are not able to satisfy the rules and criteria for applying dimensional analysis to scale-up

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Development of an assisted-teleoperation system for a dual-manipulator nuclear decommissioning robot

    Get PDF
    This thesis concerns a robotic platform that is being used for research into assisted tele–operation for common nuclear decommissioning tasks, such as remote handling and pipe cutting. The machine consists of dual, seven–function, hydraulically actuated HYDROLEK manipulators mounted (in prior research) on a mobile BROKK base unit. Whilst the original system was operated by remote control, the present thesis focusses on the development of a visual servoing system, in which the user selects the object of interest from an on–screen image, whilst the computer control system determines and implements via feedback control the required position and orientation of the manipulators. Novel research contributions are made in three main areas: (i) the development of a detailed mechanistic model of the system; (ii) the development and preliminary testing in the laboratory of the new assisted–teleoperation user interface; and (iii) the development of improved control systems for joint angle set point tracking, and their systematic, quantitative comparison via simulation and experiment. The mechanistic model builds on previous work, while the main novelty in this thesis relates to the hydraulic component of the model, and the development and evaluation of a multi–objective genetic algorithm framework to identify the unknown parameter values. To improve on the joystick direct teleoperation currently used as standard in the nuclear industry, which is slow and requires extensive operator training, the proposed assisted–teleoperation makes use of a camera mounted on the robot. Focussing on pipe cutting as an example, the new system ensures that one manipulator automatically grasps the user–selected pipe, and appropriately positions the second for a cutting operation. Initial laboratory testing (using a plastic pipe) shows the efficacy of the approach for positioning the manipulators, and suggests that for both experienced and inexperienced users, the task is completed significantly faster than via tele-operation. Finally, classical industrial, fuzzy logic, and novel state dependent parameter approaches to control are developed and compared, with the aim being to determine a relatively simple controller that yields good performance for the hydraulic manipulators. An improved, more structured method of dealing with the dead–zone characteristics is developed and implemented, replacing the rather ad hoc approach that had been utilised in previous research for the same machine

    Voyager spacecraft system. Volume B - Alternate designs considered for flight spacecraft and hardware subsystems Final technical report

    Get PDF
    Alternate mission objectives, design characteristics, and system and subsystem designs for Voyager spacecraft syste
    corecore