250 research outputs found

    Content Fragile Watermarking for H.264/AVC Video Authentication

    Get PDF
    Discrete Cosine transform (DCT) to generate the authentication data that are treated as a fragile watermark. This watermark is embedded in the motion vectors (MVs) The advances in multimedia technologies and digital processing tools have brought with them new challenges for the source and content authentication. To ensure the integrity of the H.264/AVC video stream, we introduce an approach based on a content fragile video watermarking method using an independent authentication of each Group of Pictures (GOPs) within the video. This technique uses robust visual features extracted from the video pertaining to the set of selected macroblocs (MBs) which hold the best partition mode in a tree-structured motion compensation process. An additional security degree is offered by the proposed method through using a more secured keyed function HMAC-SHA-256 and randomly choosing candidates from already selected MBs. In here, the watermark detection and verification processes are blind, whereas the tampered frames detection is not since it needs the original frames within the tampered GOPs. The proposed scheme achieves an accurate authentication technique with a high fragility and fidelity whilst maintaining the original bitrate and the perceptual quality. Furthermore, its ability to detect the tampered frames in case of spatial, temporal and colour manipulations, is confirmed

    Study and Implementation of Watermarking Algorithms

    Get PDF
    Water Making is the process of embedding data called a watermark into a multimedia object such that watermark can be detected or extracted later to make an assertion about the object. The object may be an audio, image or video. A copy of a digital image is identical to the original. This has in many instances, led to the use of digital content with malicious intent. One way to protect multimedia data against illegal recording and retransmission is to embed a signal, called digital signature or copyright label or watermark that authenticates the owner of the data. Data hiding, schemes to embed secondary data in digital media, have made considerable progress in recent years and attracted attention from both academia and industry. Techniques have been proposed for a variety of applications, including ownership protection, authentication and access control. Imperceptibility, robustness against moderate processing such as compression, and the ability to hide many bits are the basic but rat..

    Privacy-Preserving Outsourced Media Search

    Get PDF
    International audienceThis work proposes a privacy-protection framework for an important application called outsourced media search. This scenario involves a data owner, a client, and an untrusted server, where the owner outsources a search service to the server. Due to lack of trust, the privacy of the client and the owner should be protected. The framework relies on multimedia hashing and symmetric encryption. It requires involved parties to participate in a privacy-enhancing protocol. Additional processing steps are carried out by the owner and the client: (i) before outsourcing low-level media features to the server, the owner has to one-way hash them, and partially encrypt each hash-value; (ii) the client completes the similarity search by re-ranking the most similar candidates received from the server. One-way hashing and encryption add ambiguity to data and make it difficult for the server to infer contents from database items and queries, so the privacy of both the owner and the client is enforced. The proposed framework realizes trade-offs among strength of privacy enforcement, quality of search, and complexity, because the information loss can be tuned during hashing and encryption. Extensive experiments demonstrate the effectiveness and the flexibility of the framework

    Hybrid Spam Filtering for Mobile Communication

    Full text link
    Spam messages are an increasing threat to mobile communication. Several mitigation techniques have been proposed, including white and black listing, challenge-response and content-based filtering. However, none are perfect and it makes sense to use a combination rather than just one. We propose an anti-spam framework based on the hybrid of content-based filtering and challenge-response. There is the trade-offs between accuracy of anti-spam classifiers and the communication overhead. Experimental results show how, depending on the proportion of spam messages, different filtering %%@ parameters should be set.Comment: 6 pages, 5 figures, 1 tabl

    A hybrid scheme for authenticating scalable video codestreams

    Get PDF

    Digital watermarking, information embedding, and data hiding systems

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 139-142).Digital watermarking, information embedding, and data hiding systems embed information, sometimes called a digital watermark, inside a host signal, which is typically an image, audio signal, or video signal. The host signal is not degraded unacceptably in the process, and one can recover the watermark even if the composite host and watermark signal undergo a variety of corruptions and attacks as long as these corruptions do not unacceptably degrade the host signal. These systems play an important role in meeting at least three major challenges that result from the widespread use of digital communication networks to disseminate multimedia content: (1) the relative ease with which one can generate perfect copies of digital signals creates a need for copyright protection mechanisms, (2) the relative ease with which one can alter digital signals creates a need for authentication and tamper-detection methods, and (3) the increase in sheer volume of transmitted data creates a demand for bandwidth-efficient methods to either backwards-compatibly increase capacities of existing legacy networks or deploy new networks backwards-compatibly with legacy networks. We introduce a framework within which to design and analyze digital watermarking and information embedding systems. In this framework performance is characterized by achievable rate-distortion-robustness trade-offs, and this framework leads quite naturally to a new class of embedding methods called quantization index modulation (QIM). These QIM methods, especially when combined with postprocessing called distortion compensation, achieve provably better rate-distortion-robustness performance than previously proposed classes of methods such as spread spectrum methods and generalized low-bit modulation methods in a number of different scenarios, which include both intentional and unintentional attacks. Indeed, we show that distortion-compensated QIM methods can achieve capacity, the information-theoretically best possible rate-distortion-robustness performance, against both additive Gaussian noise attacks and arbitrary squared error distortion-constrained attacks. These results also have implications for the problem of communicating over broadcast channels. We also present practical implementations of QIM methods called dither modulation and demonstrate their performance both analytically and through empirical simulations.by Brian Chen.Ph.D

    High Capacity Analog Channels for Smart Documents

    Get PDF
    Widely-used valuable hardcopy documents such as passports, visas, driving licenses, educational certificates, entrance-passes for entertainment events etc. are conventionally protected against counterfeiting and data tampering attacks by applying analog security technologies (e.g. KINEGRAMS®, holograms, micro-printing, UV/IR inks etc.). How-ever, easy access to high quality, low price modern desktop publishing technology has left most of these technologies ineffective, giving rise to high quality false documents. The higher price and restricted usage are other drawbacks of the analog document pro-tection techniques. Digital watermarking and high capacity storage media such as IC-chips, optical data stripes etc. are the modern technologies being used in new machine-readable identity verification documents to ensure contents integrity; however, these technologies are either expensive or do not satisfy the application needs and demand to look for more efficient document protection technologies. In this research three different high capacity analog channels: high density data stripe (HD-DataStripe), data hiding in printed halftone images (watermarking), and super-posed constant background grayscale image (CBGI) are investigated for hidden com-munication along with their applications in smart documents. On way to develop high capacity analog channels, noise encountered from printing and scanning (PS) process is investigated with the objective to recover the digital information encoded at nearly maximum channel utilization. By utilizing noise behaviour, countermeasures against the noise are taken accordingly in data recovery process. HD-DataStripe is a printed binary image similar to the conventional 2-D barcodes (e.g. PDF417), but it offers much higher data storage capacity and is intended for machine-readable identity verification documents. The capacity offered by the HD-DataStripe is sufficient to store high quality biometric characteristics rather than extracted templates, in addition to the conventional bearer related data contained in a smart ID-card. It also eliminates the need for central database system (except for backup record) and other ex-pensive storage media, currently being used. While developing novel data-reading tech-nique for HD-DataStripe, to count for the unavoidable geometrical distortions, registra-tion marks pattern is chosen in such a way so that it results in accurate sampling points (a necessary condition for reliable data recovery at higher data encoding-rate). For more sophisticated distortions caused by the physical dot gain effects (intersymbol interfer-ence), the countermeasures such as application of sampling theorem, adaptive binariza-tion and post-data processing, each one of these providing only a necessary condition for reliable data recovery, are given. Finally, combining the various filters correspond-ing to these countermeasures, a novel Data-Reading technique for HD-DataStripe is given. The novel data-reading technique results in superior performance than the exist-ing techniques, intended for data recovery from printed media. In another scenario a small-size HD-DataStripe with maximum entropy is used as a copy detection pattern by utilizing information loss encountered at nearly maximum channel capacity. While considering the application of HD-DataStripe in hardcopy documents (contracts, official letters etc.), unlike existing work [Zha04], it allows one-to-one contents matching and does not depend on hash functions and OCR technology, constraints mainly imposed by the low data storage capacity offered by the existing analog media. For printed halftone images carrying hidden information higher capacity is mainly attributed to data-reading technique for HD-DataStripe that allows data recovery at higher printing resolution, a key requirement for a high quality watermarking technique in spatial domain. Digital halftoning and data encoding techniques are the other factors that contribute to data hiding technique given in this research. While considering security aspects, the new technique allows contents integrity and authenticity verification in the present scenario in which certain amount of errors are unavoidable, restricting the usage of existing techniques given for digital contents. Finally, a superposed constant background grayscale image, obtained by the repeated application of a specially designed small binary pattern, is used as channel for hidden communication and it allows up to 33 pages of A-4 size foreground text to be encoded in one CBGI. The higher capacity is contributed from data encoding symbols and data reading technique
    corecore