1,236 research outputs found

    Design of automation tools for management of descent traffic

    Get PDF
    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational evaluations at an en route center

    Design of automated system for management of arrival traffic

    Get PDF
    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. The design of two of these tools, the Descent Advisor, which provides automation tools for managing descent traffic, and the Traffic Management Advisor, which generates optimum landing schedules is focused on. The algorithms, automation modes, and graphical interfaces incorporated in the design are described

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    A Human−Computer Interface Replacing Mouse and Keyboard for Individuals with Limited Upper Limb Mobility

    Get PDF
    People with physical disabilities in their upper extremities face serious issues in using classical input devices due to lacking movement possibilities and precision. This article suggests an alternative input concept and presents corresponding input devices. The proposed interface combines an inertial measurement unit and force sensing resistors, which can replace mouse and keyboard. Head motions are mapped to mouse pointer positions, while mouse button actions are triggered by contracting mastication muscles. The contact pressures of each fingertip are acquired to replace the conventional keyboard. To allow for complex text entry, the sensory concept is complemented by an ambiguous keyboard layout with ten keys. The related word prediction function provides disambiguation at word level. Haptic feedback is provided to users corresponding to their virtual keystrokes for enhanced closed-loop interactions. This alternative input system enables text input as well as the emulation of a two-button mouse

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)

    Get PDF
    This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Interior maps in posterior pareital cortex

    Get PDF
    The posterior parietal cortex (PPC), historically believed to be a sensory structure, is now viewed as an area important for sensory-motor integration. Among its functions is the forming of intentions, that is, high-level cognitive plans for movement. There is a map of intentions within the PPC, with different subregions dedicated to the planning of eye movements, reaching movements, and grasping movements. These areas appear to be specialized for the multisensory integration and coordinate transformations required to convert sensory input to motor output. In several subregions of the PPC, these operations are facilitated by the use of a common distributed space representation that is independent of both sensory input and motor output. Attention and learning effects are also evident in the PPC. However, these effects may be general to cortex and operate in the PPC in the context of sensory-motor transformations

    Engineering data compendium. Human perception and performance, volume 3

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual)

    Improving everyday computing tasks with head-mounted displays

    Get PDF
    The proliferation of consumer-affordable head-mounted displays (HMDs) has brought a rash of entertainment applications for this burgeoning technology, but relatively little research has been devoted to exploring its potential home and office productivity applications. Can the unique characteristics of HMDs be leveraged to improve users’ ability to perform everyday computing tasks? My work strives to explore this question. One significant obstacle to using HMDs for everyday tasks is the fact that the real world is occluded while wearing them. Physical keyboards remain the most performant devices for text input, yet using a physical keyboard is difficult when the user can’t see it. I developed a system for aiding users typing on physical keyboards while wearing HMDs and performed a user study demonstrating the efficacy of my system. Building on this foundation, I developed a window manager optimized for use with HMDs and conducted a user survey to gather feedback. This survey provided evidence that HMD-optimized window managers can provide advantages that are difficult or impossible to achieve with standard desktop monitors. Participants also provided suggestions for improvements and extensions to future versions of this window manager. I explored the issue of distance compression, wherein users tend to underestimate distances in virtual environments relative to the real world, which could be problematic for window managers or other productivity applications seeking to leverage the depth dimension through stereoscopy. I also investigated a mitigation technique for distance compression called minification. I conducted multiple user studies, providing evidence that minification makes users’ distance judgments in HMDs more accurate without causing detrimental perceptual side effects. This work also provided some valuable insight into the human perceptual system. Taken together, this work represents valuable steps toward leveraging HMDs for everyday home and office productivity applications. I developed functioning software for this purpose, demonstrated its efficacy through multiple user studies, and also gathered feedback for future directions by having participants use this software in simulated productivity tasks
    corecore