210 research outputs found

    Back-compatible Color QR Codes for colorimetric applications

    Full text link
    Color correction techniques in digital photography often rely on the use of color correction charts, which require including this relatively large object in the field of view. We propose here to use QR Codes to pack these color charts in a compact form factor, in a fully compatible manner with conventional black and white QR Codes; this is, without losing any of their easy location, sampling and digital data storage features. First, we present an algorithm to build these new colored QR Codes that preserves the original QR Code functionality - much more than other coloring proposals based on the random substitution of black and white pixels by colors - that relies on the ability of the native CRC code to correct and counteract these alterations. Second, we demonstrate that, as a result, these QR Codes can allocate far many more colors than the conventional color correction charts, enabling much more accurate color correction schemes in a more convenient and usable format

    2D Color Barcodes for Mobile Phones

    Get PDF

    Developing anti-counterfeiting measures: the role of smart packaging

    Get PDF
    Counterfeiting of food and beverage products is rife and premium brands are often targeted by fraudsters. Such is the case with Scotch whisky, a global, reputable brand revered for its heritage and tradition. Using Scotch whisky as a case study, the aim of this paper is to review existing literature and industry information to determine the market and personal consequences of counterfeiting activities and consider the packaging related anti-counterfeiting measures that can be employed within a wider anti-counterfeiting strategy. A typology of counterfeiting activities is developed including: tear- down counterfeiting, product overruns, malicious activities and document counterfeiting. Anti-counterfeiting measures are used to deter, detect and control counterfeiting activities and different packaging related approaches include the use of smart covert and overt technology. Most smart packaging-related anti-counterfeit technologies are stand-alone systems and this presents a vulnerability. An integrated anti-counterfeiting measures strategy, employed by business, the supply chain and the government is required to reduce the risk of the sale of counterfeit food and beverage products

    NEW CAMPUS LIFE CENTER FIRE PROTECTION EVALUATION

    Get PDF
    This project report is a fire and life safety evaluation of a newly constructed building. The new Campus Life Center (CLC) building is located on the campus of Emory University in Atlanta, Georgia. The CLC is a student center where students, staff, and guests can gather to socialize, study, eat and attend conferences. The prescriptive requirements were based on the Georgia State Fire Codes, adopted on January 2014 and served as code of record for this facility. Occupant classification was established from both International Building Code (IBC) and Life Safety Code (LSC), NFPA 101, to determine construction type, interior finish and egress requirements. Building elements such as walls, doors, and floors were identified and verified that the elements met the construction type and interior finish requirements as specified in the building codes. Egress component widths were verified and exceeded the capacity width needed for the classified occupancy densities in the building. Incoming fire water line provided sufficient capacity for the automatic wet-sprinkler system without the need for a fire pump based on the calculated demand of the remote sprinkler area. This facility is equipped with an addressable fire alarm – mass notification system. The system was installed to monitor the automatic wet-sprinkler system, provide automatic and manual detection, and notify occupants of an emergency event including, fire, weather, and active shooter in the building. The smoke management design in this building was based on powering down mechanical equipment to reduce smoke movement throughout the building. A performance-based analysis was performed and documented in this report. A computer-generated movement model was created to determine occupant evacuation. The total time for all occupants to egress the building is defined as the required safe escape time (RSET) and was six-minutes. Tenability was established by a set value limit of visibility, temperature and the amount of carbon monoxide in a given space for occupants to safely escape during a fire event. Two design fires were selected and analyzed using fire dynamics simulator (FDS) and SmokeView. The first design fire was located on the second level, centrally positioned in a double story, 30-feet tall space with a concentrated assembly occupancy. The design fire was modeled in the space with stackable polypropylene chairs with steel frame as the fuel source. It took less than 200 seconds to evacuate this space. During that time there was no issues with getting close to untenable conditions while the fire grew in this space. The second design fire was located in the University Emporium, also located on the second level. In the mercantile occupancy, the store shelves with paper and plastics products were the main fuel source for the fire. Tenable conditions became close to their limit for occupants to egress the space. At 30-seconds, occupants were able to evacuate this space but not the entire floor. Recommendations based on the prescriptive and performance-based analysis for this student center are to provide clear pathways throughout the emporium so occupants can leave under 30-seconds. In commons area, furniture placement during functions that support large occupant capacities should be analyzed to limit queuing in egress pathways. Smoke detection in the double high space would provide earlier notification to occupants in other parts of the building

    Mobile Authentication with NFC enabled Smartphones

    Get PDF
    Smartphones are becoming increasingly more deployed and as such new possibilities for utilizing the smartphones many capabilities for public and private use are arising. This project will investigate the possibility of using smartphones as a platform for authentication and access control, using near field communication (NFC). To achieve the necessary security for authentication and access control purposes, cryptographic concepts such as public keys, challenge-response and digital signatures are used. To focus the investigation a case study is performed based on the authentication and access control needs of an educational institutions student ID. To gain a more practical understanding of the challenges mobile authentication encounters, a prototype has successfully been developed on the basis of the investigation. The case study performed in this project argues that NFC as a standalone technology is not yet mature to support the advanced communication required by this case. However, combining NFC with other communication technologies such as Bluetooth has proven to be effective. As a result, a general evaluation has been performed on several aspects of the prototype, such as cost-effectiveness, usability, performance and security to evaluate the viability of mobile authentication

    IR Barcode Reader

    Get PDF
    BrandWatch Technologies is a company based in Portland, Oregon that seek to detect counterfeit products in the supply chain. BrandWatch has created a taggant material, a physical marker, that can be printed over barcodes or added to the ink used to print the barcodes themselves. This material, while invisible to the naked eye, is detectable using technology that they have developed. BrandWatch enlisted the help of a four man team of Cal Poly Mechanical Engineering students to combine this technology with that of a barcode scanner. The device, capable of scanning barcodes, detecting the presence of the taggant material, and relaying this information to the user is the end result of this project. The device is easily modifiable to request a taggant read or barcode scan first. A user simply has to pull the trigger and is walked through the process of scanning and reading via LCD screen prompts on the back of the handheld device. The data collected (both barcode and the presence of the taggant) is stored in a csv file on a small USB drive on the back of the device. This can easily be removed to transfer the data to a computer at the end of a work day

    Automated color correction for colorimetric applications using barcodes

    Get PDF
    [eng] Color-based sensor devices often offer qualitative solutions, where a material change its color from one color to another, and this is change is observed by a user who performs a manual reading. These materials change their color in response to changes in a certain physical or chemical magnitude. Nowadays, we can find colorimetric indicators with several sensing targets, such as: temperature, humidity, environmental gases, etc. The common approach to quantize these sensors is to place ad hoc electronic components, e.g., a reader device. With the rise of smartphone technology, the possibility to automatically acquire a digital image of those sensors and then compute a quantitative measure is near. By leveraging this measuring process to the smartphones, we avoid the use of ad hoc electronic components, thus reducing colorimetric application cost. However, there exists a challenge on how-to acquire the images of the colorimetric applications and how-to do it consistently, with the disparity of external factors affecting the measure, such as ambient light conditions or different camera modules. In this thesis, we tackle the challenges to digitize and quantize colorimetric applications, such as colorimetric indicators. We make a statement to use 2D barcodes, well-known computer vision patterns, as the base technology to overcome those challenges. We focus on four main challenges: (I) to capture barcodes on top of real-world challenging surfaces (bottles, food packages, etc.), which are the usual surface where colorimetric indicators are placed; (II) to define a new 2D barcode to embed colorimetric features in a back-compatible fashion; (III) to achieve image consistency when capturing images with smartphones by reviewing existent methods and proposing a new color correction method, based upon thin-plate splines mappings; and (IV) to demonstrate a specific application use case applied to a colorimetric indicator for sensing CO2 in the range of modified atmosphere packaging, MAP, one of the common food-packaging standards.[cat] Els dispositius de sensat basats en color, normalment ofereixen solucions qualitatives, en aquestes solucions un material canvia el seu color a un altre color, i aquest canvi de color és observat per un usuari que fa una mesura manual. Aquests materials canvien de color en resposta a un canvi en una magnitud física o química. Avui en dia, podem trobar indicadors colorimètrics que amb diferents objectius, per exemple: temperatura, humitat, gasos ambientals, etc. L'opció més comuna per quantitzar aquests sensors és l'ús d'electrònica addicional, és a dir, un lector. Amb l'augment de la tecnologia dels telèfons intel·ligents, la possibilitat d'automatitzar l'adquisició d'imatges digitals d'aquests sensors i després computar una mesura quantitativa és a prop. Desplaçant aquest procés de mesura als telèfons mòbils, evitem l'ús d'aquesta electrònica addicional, i així, es redueix el cost de l'aplicació colorimètrica. Tanmateix, existeixen reptes sobre com adquirir les imatges de les aplicacions colorimètriques i de com fer-ho de forma consistent, a causa de la disparitat de factors externs que afecten la mesura, com per exemple la llum ambient or les diferents càmeres utilitzades. En aquesta tesi, encarem els reptes de digitalitzar i quantitzar aplicacions colorimètriques, com els indicadors colorimètrics. Fem una proposició per utilitzar codis de barres en dues dimensions, que són coneguts patrons de visió per computador, com a base de la nostra tecnologia per superar aquests reptes. Ens focalitzem en quatre reptes principals: (I) capturar codis de barres sobre de superfícies del món real (ampolles, safates de menjar, etc.), que són les superfícies on usualment aquests indicadors colorimètrics estan situats; (II) definir un nou codi de barres en dues dimensions per encastar elements colorimètrics de forma retro-compatible; (III) aconseguir consistència en la captura d'imatges quan es capturen amb telèfons mòbils, revisant mètodes de correcció de color existents i proposant un nou mètode basat en transformacions geomètriques que utilitzen splines; i (IV) demostrar l'ús de la tecnologia en un cas específic aplicat a un indicador colorimètric per detectar CO2 en el rang per envasos amb atmosfera modificada, MAP, un dels estàndards en envasos de menjar.

    Fire and Life Safety Evaluation of an Assisted Living and Memory Care Center

    Get PDF
    This culminating project has been submitted as part of the graduate program in Fire Protection Engineering at Cal Poly. It documents an Assisted Living and Memory Care Center’s compliance with applicable fire safety prescriptions contained in the 2019 California Building and Fire Codes (CBC and CFC). Performance-based methods incorporating deterministic design fires were then used to verify that the final building design and operating procedures met the life safety needs of its unique occupants. The building under analysis was a 45,000 sq. ft, two-story, 58-bed residential care facility for the elderly. Occupants were all 60 years or older without acute medical conditions but with potential mild to severe mobility, sensory, and cognitive impairments. The fire- resistance-rated light-frame wood structure, its compartmentalized interior layout, and its active fire protection systems were found to satisfy the code provisions adopted by the local authority having jurisdiction. These included plentiful egress and exit capacity, localized fire and smoke containment, early smoke detection, audible and visual notification at levels appropriate to the occupants, and complete quick-response sprinkler coverage for life and property protection. The priorities of the performance-based analysis were to check the adequacy of these code-compliant fire protection features, as well as to support housing accessibility and to inform staff training. These required realistic fire models to verify available safe egress times (ASETs), which were shorter for these residents than the general population due to their lower tolerances for heat and smoke exposure. Design fires took guidance from NFPA 101 Life Safety Code and the author’s research on the history of fatal care home fires. All fires were placed in residential wings using heat release data from calorimetry tests of residential furniture and mixed natural/ synthetic hydrocarbon contents in staff supply closets. Initial growth rates were between fast (0.0469 kW/s2) and ultrafast (0.1876 kW/s2), with peak heat release rates and embodied energies appropriate to the fuel packages but ultimately determined by ventilation conditions. Model results supported the existing building design but showed that additional fuel control, compartmentation, detection/ notification, and automatic suppression would strengthen care staff’s response to and management of fires. Specifically, all rooms that communicate with residential corridors should have smoke detection and be fitted with door self-closers, following the findings of Performance Design Fires ‘B’ and ‘C.’ Where clients are housed also impacts their fire safety, so their facility intake forms/ health assessments should be used to guide placement— per Performance Design Fire ‘A,’ Assisted Living residents with the greatest cognitive, sensory, and locomotion disabilities should be housed closest to the lobby to receive prompt aid and minimize burns and smoke inhalation. These vulnerabilities also mean that sprinkler protection should be designed following the more rigorous commercial NFPA 13 standard as opposed to low- rise residential NFPA 13R, which was demonstrated in Performance Design Fire ‘D.’ Performance Design Fire ‘A’ was a nighttime living room furniture fire typical of all 40 Assisted Living dwellings. The occupant was assumed to be sleeping in the bedroom and not intimate with ignition; they were also capable of self-evacuation. Their required safe egress time (RSET) included a delay in waking to their low-frequency smoke alarm and traversing their unit to the corridor door, which totaled two minutes. At this time, the visibility through smoke was well below what would normally be accepted for design. The gasses at six feet above finished floor in the egress path were already too hot to move through (120°C), so the evacuee had to stoop, crouch, or even crawl, depending on the effectiveness of the sprinkler suppression. Since the sprinkler did temper heat, the asphyxiant fractional effective dose for incapacitation (FEDtot = 0.1) became the limiting tenability criteria; an especially respiratory-sensitive evacuee who took longer to find their door would have been incapacitated at two and a half minutes, but staff was expected to intervene by then. The slim margin for human error suggests that this scenario would benefit from a probabilistic assessment that includes ignition and suppression. A deterministic solution would be to regulate the flame spread and heat release of the furniture that residents bring in or are provided with. In scenarios ‘B’ and ‘C,’ a mixed cellulose/ plastics design fire was placed in staff supply closets with doors open to the residential hallways in the Assisted Living and Memory Care wings. The door in Performance Design Fire ‘B’ was self-closing, so wedging it open represented an n = 1 managerial failure; the closet sprinkler was operational. The nighttime RSET of Assisted Living residents to reach an adjacent smoke compartment was three to four minutes, depending on their disability. The ASET was the time for the smoke layer to descend to six feet in the corridor, which was the only evacuation route. This occurred by a minute and a half for 44% of the dwelling units along the hallway, which was the earliest staff was expected to arrive and close the fire room door. Since visibility at the staff entrance to the corridor was below two meters, and required crouching or crawling to access the room, closing the fire room door was not a certainty. This scenario necessitated partial or full defend-in-place in the Assisted Living wing. A similar result was found for the Memory Care wing in Performance Design Fire ‘C.’ A faulty sprinkler was an n = 1 device failure in this scenario because the closet door was not required to be self-closing. Occupants with dementia/ MNCD were assumed to be incapable of self-evacuation, and an RSET was not calculated for full staff evacuation of the wing, but it would have been much longer than the minute and a half ASET it took for smoke to descend to six feet in most of the corridor. Performance Design Fire ‘D’ looked at ignition within a Memory Care dwelling and NFPA 13’s requirement for sprinklers in clothes closets, which goes beyond NFPA 13R. This model also assumed an n = 1 device failure of the sprinkler. In contrast with Design Fire ‘A,’ the RSET was the time it took for an attendant to rescue the fire room occupant. This was just over a minute; since the fire was shielded from the main room sprinkler by the closet door, the fire burned uncontrolled, and the heat became intolerable overhead (200°C) after a minute and a half. This slim margin for attendant error echoes the conclusions of Design Fire ‘A.’ A summary of ASETs versus RSETs and additional observations can be found in Chapter 11. Facility operator responsibilities, including fuel control, housekeeping, fire protection systems maintenance, and emergency preparedness plans, can be found in the fire safety plan in Chapter 12. These are primarily based on the requirements of the CFC and the findings of this report\u27s prescriptive and performance chapters

    A generic framework to create and use QR codes and a usage case in the field of access control under Android

    Get PDF
    This project describes the development of a framework for secure exchange of secret information based on QR codes. The framework is programmed to be platform-independent. A possible usage scenario in the field of access control is described and a program to fit said scenario is presented, which runs on Android. Various design considerations are discussed and a number of possible off-the-label uses are considered. At the end, a road map for future improvements is presented. The present document has been drawn up to show the steps in the development of the framework in detail.El presente proyecto describe el desarrollo de un framework para el intercambio seguro de información secreta basado en códigos QR. El framework se desarrolla independientemente de la plataforma operativa. Se describe un posible uso en el ámbito del control de acceso y se presenta un programa ejemplo de su uso bajo Android. Se sustenta el diseño elegido y se presentan algunos posibles usos en otros ámbitos. Al final, se presenta una posible vía de futura evolución de la plataforma. El presente documento tiene como finalidad la presentación detallada de todos los pasos en el desarrollo del framework.Ingeniería Técnica en Sistemas de Telecomunicació

    Roadmap on optical security

    Get PDF
    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections: Sheridan reviews phase retrieval algorithms to perform different attacks, whereas Situ discusses nonlinear optical encryption techniques and the development of a rigorous optical information security theory. The fourth category with two contributions reports how encryption could be implemented at the nano- or micro-scale. Naruse discusses the use of nanostructures in security applications and Carnicer proposes encoding information in a tightly focused beam. In the fifth category, encryption based on ghost imaging using single-pixel detectors is also considered. In particular, the authors [Chen, Tajahuerce] emphasize the need for more specialized hardware and image processing algorithms. Finally, in the sixth category, Mosk and Javidi analyze in their corresponding papers how quantum imaging can benefit optical encryption systems. Sources that use few photons make encryption systems much more difficult to attack, providing a secure method for authentication.Centro de Investigaciones ÓpticasConsejo Nacional de Investigaciones Científicas y Técnica
    corecore