303 research outputs found

    A Genome-Scale Model of \u3cem\u3eShewanella piezotolerans\u3c/em\u3e Simulates Mechanisms of Metabolic Diversity and Energy Conservation

    Get PDF
    Shewanella piezotolerans strain WP3 belongs to the group 1 branch of the Shewanella genus and is a piezotolerant and psychrotolerant species isolated from the deep sea. In this study, a genome-scale model was constructed for WP3 using a combination of genome annotation, ortholog mapping, and physiological verification. The metabolic reconstruction contained 806 genes, 653 metabolites, and 922 reactions, including central metabolic functions that represented nonhomologous replacements between the group 1 and group 2 Shewanella species. Metabolic simulations with the WP3 model demonstrated consistency with existing knowledge about the physiology of the organism. A comparison of model simulations with experimental measurements verified the predicted growth profiles under increasing concentrations of carbon sources. The WP3 model was applied to study mechanisms of anaerobic respiration through investigating energy conservation, redox balancing, and the generation of proton motive force. Despite being an obligate respiratory organism, WP3 was predicted to use substrate-level phosphorylation as the primary source of energy conservation under anaerobic conditions, a trait previously identified in other Shewanella species. Further investigation of the ATP synthase activity revealed a positive correlation between the availability of reducing equivalents in the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3 model with an existing model of a group 2 species, Shewanella oneidensis MR-1, revealed that the WP3 model demonstrated greater flexibility in ATP production under the anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation to fluctuating availability of organic carbon sources in the deep sea

    Conserved synteny at the protein family level reveals genes underlying Shewanella species’ cold tolerance and predicts their novel phenotypes

    Get PDF
    © The Authors 2009. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Functional & Integrative Genomics 10 (2010): 97-110, doi:10.1007/s10142-009-0142-y.Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species’ cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach, we find a link between cold and salt tolerance of the species and the presence in the genome of a Na+/H+ antiporter gene cluster. Other cold-tolerance-related genes include peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach, we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in Shewanella woodyi, degradation of ethanolamine by Shewanella benthica, and propanediol degradation by Shewanella putrefaciens CN32 and Shewanella sp. W3-18-1.This research was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research under the Genomics: GTL Program via the Shewanella Federation consortium

    Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    Full text link

    Experimental Adaptation of a Free-Living Bacterium to the Zebrafish Digestive Tract

    Get PDF
    Animals have coexisted with an omnipresent and diverse array of bacteria for the entirety of their evolutionary history. As a result, symbioses between animals and bacteria are ubiquitous and can range from mutualism to parasitism. In particular, countless studies have demonstrated the pivotal role that bacteria residing in animal digestive tracts can play in determining animal health and well-being. However, it is still unknown how bacteria evolve the ability colonize animals. Due to the dramatic impacts that animals and bacteria can have on one another’s fitness, it is imperative to understand how symbioses between bacteria and their animal hosts originate. Therefore, to elucidate how bacteria evolve novel associations with vertebrate hosts, I serially passaged six replicate populations of a bacterial species with no prior known host associations (Shewanella oneidensis) through the digestive tracts of a model vertebrate, zebrafish (Danio rerio). After 20 passages through the digestive tracts of groups of larval zebrafish that were derived bacteria free (amounting to approximately 200 bacterial generations), I observed that all six replicate populations evolved to outcompete their unpassaged ancestor in terms of their ability to colonize larval guts. I subsequently sequenced the genomes of four evolved S. oneidensis isolates from each replicate population and found that their competitive advantage stemmed from two distinct classes of mutations that occurred in a mannose sensitive hemagglutinin pilus operon as well as in genes with putative diguanylate cyclase and phosphodiesterase domains. Both types of mutations enhanced bacterial motility, which was associated with increased representation in the aqueous portion of my experimental system and more efficient per capita immigration into zebrafish guts relative to the ancestral S. oneidensis reference strain. These increases in motility, were consistent with the behavior of a closely-related Shewanella species (Shewanella sp. ZOR0012) that has recently been isolated from the zebrafish digestive tract implying that my evolved isolates may be pursuing a similar adaptive trajectory to the one taken by this host-associated species. My results suggest that a non-host-associated microorganism can rapidly improve its ability to colonize hosts, and this study is the first to capture the early adaptive steps necessary to facilitate this transition

    Ecophysiology and diversity of anaeromyxobacter spp. and implications for uranium bioremediation

    Get PDF
    Uranium has been released into the environment due to improper practices associated with mining and refinement for energy and weapons production. Soluble U(VI) species such as uranyl carbonate can be reduced to form the insoluble U(IV) mineral uraninite (UO2) via microbial respiratory processes. Formation of UO2 diminishes uranium mobility and prevents uranium-laden groundwater from being discharged into surface water; however, oxygen and other oxidants re-solubilize UO2. Many organisms have been shown to reduce uranium, but variations in microbial physiology change the dynamics of microbial uranium reduction in situ and affect uraninite stability. Anaeromyxobacter dehalogenans is a metal-reducing delta-Proteobacterium in the myxobacteria family that displays remarkable respiratory versatility and efficiently reduces U(VI). The approach of this research was to enhance characterization of A. dehalogenans by identifying unique genetic traits, describing variability within the species, and examining the environmental distribution of A. dehalogenans strains. Genome analysis revealed that A. dehalogenans shares many traits with the myxobacteria including type IV pilus-based motility and an aerobic-like electron transport chain. In addition, the genome revealed genes that share sequence similarity with strict anaerobes and other metal-reducing organisms. Physiological examination of microaerophilism in A. dehalogenans strain 2CP-C revealed growth at sub-atmospheric oxygen partial pressure. Physiological characterization of novel isolates demonstrated that strain-level variation in the 16S rRNA gene coincides with metabolic changes that can be linked to the loss of specific gene homologs. Anaeromyxobacter spp. were present at the Oak Ridge Integrated Field-scale Subsurface Research Challenge (IFC) site and multiplex qPCR tools designed using a minor-groove binding probe gave insights into strain and species differences in the community. Finally, 16S rRNA gene sequences were identified which suggest a novel Anaeromyxobacter species that is responsible for uranium reduction at the Oak Ridge IFC site. This research contributes new knowledge of the ecophysiology of a widely distributed, metal-reducing bacterial group capable of uranium immobilization. The characterization of Anaeromyxobacter spp. helps to elucidate the dynamics of biological cycling of metals at oxic-anoxic interfaces, like those at the Oak Ridge IFC, and contributes to the broader study of microbial ecology in groundwater and sediment environments.Ph.D.Committee Chair: Dr. Frank E. Löffler; Committee Member: Dr. Joseph B. Hughes; Committee Member: Dr. Kurt D. Pennell; Committee Member: Dr. Lawrence J. Shimkets; Committee Member: Dr. Robert A. Sanford; Committee Member: Dr. Thomas DiChristin

    New insights into Dehalococcoides mccartyi metabolism from a reconstructed metabolic network-based systems-level analysis of D. mccartyi transcriptomes

    Get PDF
    Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi. Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic data for a pure isolate (Dehalococcoides mccartyi strain 195) and a mixed microbial consortium (KB-1) using the previously developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A composite genome of two highly similar D. mccartyi strains (KB-1 Dhc) from the KB-1 metagenome sequence was constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for KB-1 Dhc) of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism’s metabolic reconstruction in analyzing various ‘‘omics’’ data to obtain improved understanding of the metabolism and physiology of the organism

    Metabolic Engineering of Cyanobacteria for Photosynthetic Production of Drop-In Liquid Fuels

    Get PDF
    Cyanobacteria are oxygenic phototrophs with great potential as hosts for renewable fuel and chemical production. They grow very quickly (compared with plants) and can use sunlight for energy and CO2 as a carbon source (unlike yeast or E. coli). While cyanobacteria have been engineered to make many chemicals that are native and non-native parts of their metabolism, this work is concerned with the production of heptadecane in Synechocystis sp. PCC 6803. Heptadecane is in a class of natural products produced by all cyanobacteria, but in quantities insufficient for industrialization. Towards this future goal, we have built enabling systems for the overproduction of fuels and chemicals in Synechocystis 6803 and cyanoabacteria generally. These tools include plasmid vectors for the overproduction of heterologous proteins and genome- scale metabolic models that can predict strategies for metabolite overproduction. We have shown that the vectors we developed are helpful in controlling the level and timing of heterologous protein expression using a fluorescent reporter, and have made progress towards heptadecane overproduction. During this process, we have also found that heptadecane is crucial for cold tolerance and modulates cyclic electron flow in photosynthesis. In addition to measuring this phenotype in vivo, we have analyzed it in silico using our genome-scale metabolic model and have gained insight into the role of cyclic electron flow in photosynthesis generally

    Developing the MAR databases – Augmenting Genomic Versatility of Sequenced Marine Microbiota

    Get PDF
    This thesis introduces the MAR databases as marine-specific resources in the genomic landscape. Paper 1 describes the curation effort and development leading to the MAR databases being created. It results in the highly valued reference database MarRef, the broader MarDB, and the marine gene catalog MarCat. Definition of a marine environment, the curation process, and the Marine Metagenomics Portal as a public web-service are described. It facilitates scientists to find marine sequence data for prokaryotes and to explore rich contextual information, secondary metabolites, updated taxonomy, and helps in evaluating genome quality. Many of these database advancements are covered in Paper 2. This includes new entries and development of specific databases on marine fungi (MarFun) and salmon related prokaryotes (SalDB). With the implementation of metagenome assembled and single amplified genomes it leads up to the database quality evaluation discussed in Paper 3. The lack of quality control in primary databases is here discussed based on estimated completeness and contamination in the genomes of the MAR databases. Paper 4 explores the microbiota of skin and gut mucosa of Atlantic salmon. By using a database dependent amplicon analysis, the full-length 16 rRNA gene proved accurate, but not a game-changer in taxonomic classification for this environmental niche. The proportion of dataset sequences lacking clear taxonomic classification suggests lack of diversity in current-day databases and inadequate phylogenetic resolution. Advancing phylogenetic resolution was the subject of Paper 5. Here the highly similar species of genus Aliivibrio became delineated using six genes in a multilocus sequence analysis. Five potentially novel species could in this way be delineated, which coincided with recent genome-wide taxonomy listings. Thus, Paper 4 and 5 parallel those of the MAR databases by providing insight into the inter-relational framework of bioinformatic analysis and marine database sources

    Development and Application of Fluxomics Tools for Analyzing Metabolisms in Non-Model Microorganisms

    Get PDF
    Decoding microbial metabolism is of great importance in revealing the mechanisms governing the physiology of microbes and rewiring the cellular functions in metabolic engineering. Complementing the genomics, transcriptomics, proteinomics and metabolomics analysis of microbial metabolism, fluxomics tools can measure and simulate the in vivo enzymatic reactions as direct readouts of microbial metabolism. This dissertation develops and applies broad-scope tools in metabolic flux analysis to investigate metabolic insights of non-model environmental microorganisms. 13C-based pathway analysis has been applied to analyze specific carbon metabolic routes by tracing and analyzing isotopomer labeling patterns of different metabolites after growing cells with 13C-labeled substrates. Novel pathways, including Re-type citrate synthase in tricarboxylic acid cycle and citramalate pathways as an alternate route for isoleucine biosynthesis, have been identified in Thermoanaerobacter X514 and other environmental microorganisms. Via the same approach, the utilizations of diverse carbon/nitrogen substrates and productions of hydrogen during mixotrophic metabolism in Cyanothece 51142 have been characterized, and the medium for a slow-growing bacterium, Dehalococcoides ethenogenes 195, has been optimized. In addition, 13C-based metabolic flux analysis has been developed to quantitatively profile flux distributions in central metabolisms in a green sulfur bacterium, Chlorobaculum tepidum, and thermophilic ethanol-producing Thermoanaerobacter X514. The impact of isotope discrimination on 13C-based metabolic flux analysis has also been estimated. A constraint-based flux analysis approach was newly developed to integrate the bioprocess model into genome-scale flux balance analysis to decipher the dynamic metabolisms of Shewanella oneidensis MR-1. The sub-optimal metabolism and the time-dependent metabolic fluxes were profiled in a genome-scale metabolic network. A web-based platform was constructed for high-throughput metabolic model drafting to bridge the gap between fast-paced genome-sequencing and slow-paced metabolic model reconstruction. The platform provides over 1,000 sequenced genomes for model drafting and diverse customized tools for model reconstruction. The in silico simulation of flux distributions in both metabolic steady state and dynamic state can be achieved via flux balance analysis and dynamic flux balance analysis embedded in this platform. Cutting-edge fluxomics tools for functional characterization and metabolic prediction continue to be developed in the future. Broad-scope systems biology tools with integration of transcriptomics, proteinomics and fluxomics can reveal cell-wide regulations and speed up the metabolic engineering of non-model microorganisms for diverse bioenergy and environmental applications

    Growth Trade-Offs Accompany the Emergence of Glycolytic Metabolism in Shewanella oneidensis MR-1

    Get PDF
    ABSTRACT Bacteria increase their metabolic capacity via the acquisition of genetic material or by the mutation of genes already present in the genome. Here, we explore the mechanisms and trade-offs involved when Shewanella oneidensis, a bacterium that typically consumes small organic and amino acids, rapidly evolves to expand its metabolic capacity to catabolize glucose after a short period of adaptation to a glucose-rich environment. Using whole-genome sequencing and genetic approaches, we discovered that deletions in a region including the transcriptional repressor (nagR) that regulates the expression of genes associated with catabolism of N-acetylglucosamine are the common basis for evolved glucose metabolism across populations. The loss of nagR results in the constitutive expression of genes for an N-acetylglucosamine permease (nagP) and kinase (nagK). We demonstrate that promiscuous activities of both NagP and NagK toward glucose allow for the transport and phosphorylation of glucose to glucose-6-phosphate, the initial events of glycolysis otherwise thought to be absent in S. oneidensis. 13C-based metabolic flux analysis uncovered that subsequent utilization was mediated by the Entner-Doudoroff pathway. This is an example whereby gene loss and preexisting enzymatic promiscuity, and not gain-of-function mutations, were the drivers of increased metabolic capacity. However, we observed a significant decrease in the growth rate on lactate after adaptation to glucose catabolism, suggesting that trade-offs may explain why glycolytic function may not be readily observed in S. oneidensis in natural environments despite it being readily accessible through just a single mutational event. IMPORTANCE: Gains in metabolic capacity are frequently associated with the acquisition of novel genetic material via natural or engineered horizontal gene transfer events. Here, we explored how a bacterium that typically consumes small organic acids and amino acids expands its metabolic capacity to include glucose via a loss of genetic material, a process frequently associated with a deterioration of metabolic function. Our findings highlight how the natural promiscuity of transporters and enzymes can be a key driver in expanding metabolic diversity and that many bacteria may possess a latent metabolic capacity accessible through one or a few mutations that remove regulatory functions. Our discovery of trade-offs between growth on lactate and on glucose suggests why this easily gained trait is not observed in nature
    • …
    corecore