2,680 research outputs found

    Thermal remote sensing of sea surface temperature

    Get PDF
    Sea surface temperature has been an important application of remote sensing from space for three decades. This chapter first describes well-established methods that have delivered valuable routine observations of sea surface temperature for meteorology and oceanography. Increasingly demanding requirements, often related to climate science, have highlighted some limitations of these ap-proaches. Practitioners have had to revisit techniques of estimation, of characterising uncertainty, and of validating observations—and even to reconsider the meaning(s) of “sea surface temperature”. The current understanding of these issues is reviewed, drawing attention to ongoing questions. Lastly, the prospect for thermal remote sens-ing of sea surface temperature over coming years is discussed

    Preliminary assessment of soil moisture over vegetation

    Get PDF
    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options

    Observational needs of sea surface temperature

    Get PDF
    Sea surface temperature (SST) is a fundamental physical variable for understanding, quantifying and predicting complex interactions between the ocean and the atmosphere. Such processes determine how heat from the sun is redistributed across the global oceans, directly impacting large- and small-scale weather and climate patterns. The provision of daily maps of global SST for operational systems, climate modeling and the broader scientific community is now a mature and sustained service coordinated by the Group for High Resolution Sea Surface Temperature (GHRSST) and the CEOS SST Virtual Constellation (CEOS SST-VC). Data streams are shared, indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework, which is implemented internationally in a distributed manner. Products rely on a combination of low-Earth orbit infrared and microwave satellite imagery, geostationary orbit infrared satellite imagery, and in situ data from moored and drifting buoys, Argo floats, and a suite of independent, fully characterized and traceable in situ measurements for product validation (Fiducial Reference Measurements, FRM). Research and development continues to tackle problems such as instrument calibration, algorithm development, diurnal variability, derivation of high-quality skin and depth temperatures, and areas of specific interest such as the high latitudes and coastal areas. In this white paper, we review progress versus the challenges we set out 10 years ago in a previous paper, highlight remaining and new research and development challenges for the next 10 years (such as the need for sustained continuity of passive microwave SST using a 6.9 GHz channel), and conclude with needs to achieve an integrated global high-resolution SST observing system, with focus on satellite observations exploited in conjunction with in situ SSTs. The paper directly relates to the theme of Data Information Systems and also contributes to Ocean Observing Governance and Ocean Technology and Networks within the OceanObs2019 objectives. Applications of SST contribute to all the seven societal benefits, covering Discovery; Ecosystem Health & Biodiversity; Climate Variability & Change; Water, Food, & Energy Security; Pollution & Human Health; Hazards and Maritime Safety; and the Blue Economy

    On the Structure of the Lower Troposphere in the Summertime Stratocumulus Regime of the Northeast Pacific

    Get PDF
    Data collected in situ as part of the second field study of the Dynamics and Chemistry of Marine Stratocumulus field program are used to evaluate the state of the atmosphere in the region of field operations near 30°N, 120°W during July 2001, as well as its representation by a variety of routinely available data. The routine data include both the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and NCEP–NCAR reanalyses, forecasts from their respective forecast systems (the Integrated and Global Forecast Systems), the 30-km archive from the International Satellite Cloud Climatology Project (ISCCP), the Quick Scatterometer surface winds, and remotely sensed fields derived from radiances measured by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), the Advanced Microwave Sounding Unit, and the Advanced Very High Resolution Radiometer. The analysis shows that outside of the boundary layer the state of the lower troposphere is reasonably represented by the reanalysis and forecast products, with the caveat of a slight warm bias at 850 hPa in the NCEP–NCAR products. Within the planetary boundary layer (PBL) the agreement is not as good: both the boundary layer depth and cloud amount are underpredicted, and the boundary layer temperature correlates poorly with the available data, which may be related to a poor representation of SSTs in this region of persistent cloud cover. ERA-40 also suffers from persistently weak zonal winds within the PBL. Among the satellite records the ISCCP data are found to be especially valuable, evincing skill in both predicting boundary layer depth (from cloud-top temperatures and TMI surface temperatures) and cloud liquid water paths (from cloud optical depths). An analysis of interannual variability (among Julys) based on ERA-40 and the 1983–2001 ISCCP record suggests that thermodynamic quantities show similar interannual and synoptic variability, principally concentrated just above the PBL, while dynamic quantities vary much more on synoptic time scales. Furthermore, the analysis suggests that the correlation between stratocumulus cloud amount and lower-tropospheric stability exhibits considerable spatial structure and is less pronounced than previously thought

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets
    corecore