526 research outputs found

    Multi-Observation Continuous Density Hidden Markov Models for Anomaly Detection in Full Motion Video

    Get PDF
    An increase in sensors on the battlefield produces an abundance of collected data that overwhelms the processing capability of the DoD. Automated Visual Surveillance (AVS) seeks to use machines to better exploit increased sensor data, such as by highlighting anomalies. In this thesis, we apply AVS to overhead Full Motion Video (FMV). We seek to automate the classification of soldiers in a simulated combat scenario into their agent types. To this end, we use Multi-Dimensional Continuous Density Hidden Markov Models (MOCDHMMs), a form of HMM which models a training dataset more precisely than simple HMMs. MOCDHMMs are theoretically developed but thinly applied in literature. We discover and correct three errors which occur in HMM algorithms when applied to MOCDHMMs but not when applied to simple HMMs. We offer three fixes to the errors and show analytically why they work. To show the fixes effective, we conduct experiments on three datasets: two pilot experiment datasets and a simulated combat scenario dataset. The modified MOCDHMM algorithm gives statistically significant improvement over the standard MOCDHMM: 5% improvement in accuracy for the pilot datasets and 3% for the combat scenario dataset. In addition, results suggest that increasing the number of hidden states in an MOCDHMM classifier increases the separability of the classes but also increases classifier bias. Furthermore, we find that classification based on tracked position alone is possible and that MOCDHMM classifiers are highly resistant to noise in their training data

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Recognizing Teamwork Activity In Observations Of Embodied Agents

    Get PDF
    This thesis presents contributions to the theory and practice of team activity recognition. A particular focus of our work was to improve our ability to collect and label representative samples, thus making the team activity recognition more efficient. A second focus of our work is improving the robustness of the recognition process in the presence of noisy and distorted data. The main contributions of this thesis are as follows: We developed a software tool, the Teamwork Scenario Editor (TSE), for the acquisition, segmentation and labeling of teamwork data. Using the TSE we acquired a corpus of labeled team actions both from synthetic and real world sources. We developed an approach through which representations of idealized team actions can be acquired in form of Hidden Markov Models which are trained using a small set of representative examples segmented and labeled with the TSE. We developed set of team-oriented feature functions, which extract discrete features from the high-dimensional continuous data. The features were chosen such that they mimic the features used by humans when recognizing teamwork actions. We developed a technique to recognize the likely roles played by agents in teams even before the team action was recognized. Through experimental studies we show that the feature functions and role recognition module significantly increase the recognition accuracy, while allowing arbitrary shuffled inputs and noisy data

    Hidden Markov Models in Dynamic System Modelling and Diagnosis

    Get PDF
    • …
    corecore