2,632 research outputs found

    Estimation of the Handwritten Text Skew Based on Binary Moments

    Get PDF
    Binary moments represent one of the methods for the text skew estimation in binary images. It has been used widely for the skew identification of the printed text. However, the handwritten text consists of text objects, which are characterized with different skews. Hence, the method should be adapted for the handwritten text. This is achieved with the image splitting into separate text objects made by the bounding boxes. Obtained text objects represent the isolated binary objects. The application of the moment-based method to each binary object evaluates their local text skews. Due to the accuracy, estimated skew data can be used as an input to the algorithms for the text line segmentation

    Vision Based Extraction of Nutrition Information from Skewed Nutrition Labels

    Get PDF
    An important component of a healthy diet is the comprehension and retention of nutritional information and understanding of how different food items and nutritional constituents affect our bodies. In the U.S. and many other countries, nutritional information is primarily conveyed to consumers through nutrition labels (NLs) which can be found in all packaged food products. However, sometimes it becomes really challenging to utilize all this information available in these NLs even for consumers who are health conscious as they might not be familiar with nutritional terms or find it difficult to integrate nutritional data collection into their daily activities due to lack of time, motivation, or training. So it is essential to automate this data collection and interpretation process by integrating Computer Vision based algorithms to extract nutritional information from NLs because it improves the user’s ability to engage in continuous nutritional data collection and analysis. To make nutritional data collection more manageable and enjoyable for the users, we present a Proactive NUTrition Management System (PNUTS). PNUTS seeks to shift current research and clinical practices in nutrition management toward persuasion, automated nutritional information processing, and context-sensitive nutrition decision support. PNUTS consists of two modules, firstly a barcode scanning module which runs on smart phones and is capable of vision-based localization of One Dimensional (1D) Universal Product Code (UPC) and International Article Number (EAN) barcodes with relaxed pitch, roll, and yaw camera alignment constraints. The algorithm localizes barcodes in images by computing Dominant Orientations of Gradients (DOGs) of image segments and grouping smaller segments with similar DOGs into larger connected components. Connected components that pass given morphological criteria are marked as potential barcodes. The algorithm is implemented in a distributed, cloud-based system. The system’s front end is a smartphone application that runs on Android smartphones with Android 4.2 or higher. The system’s back end is deployed on a five node Linux cluster where images are processed. The algorithm was evaluated on a corpus of 7,545 images extracted from 506 videos of bags, bottles, boxes, and cans in a supermarket. The DOG algorithm was coupled to our in-place scanner for 1D UPC and EAN barcodes. The scanner receives from the DOG algorithm the rectangular planar dimensions of a connected component and the component’s dominant gradient orientation angle referred to as the skew angle. The scanner draws several scan lines at that skew angle within the component to recognize the barcode in place without any rotations. The scanner coupled to the localizer was tested on the same corpus of 7,545 images. Laboratory experiments indicate that the system can localize and scan barcodes of any orientation in the yaw plane, of up to 73.28 degrees in the pitch plane, and of up to 55.5 degrees in the roll plane. The videos have been made public for all interested research communities to replicate our findings or to use them in their own research. The front end Android application is available for free download at Google Play under the title of NutriGlass. This module is also coupled to a comprehensive NL database from which nutritional information can be retrieved on demand. Currently our NL database consists of more than 230,000 products. The second module of PNUTS is an algorithm whose objective is to determine the text skew angle of an NL image without constraining the angle’s magnitude. The horizontal, vertical, and diagonal matrices of the (Two Dimensional) 2D Haar Wavelet Transform are used to identify 2D points with significant intensity changes. The set of points is bounded with a minimum area rectangle whose rotation angle is the text’s skew. The algorithm’s performance is compared with the performance of five text skew detection algorithms on 1001 U.S. nutrition label images and 2200 single- and multi-column document images in multiple languages. To ensure the reproducibility of the reported results, the source code of the algorithm and the image data have been made publicly available. If the skew angle is estimated correctly, optical character recognition (OCR) techniques can be used to extract nutrition information

    Word Recognition in Nutrition Labels with Convolutional Neural Network

    Get PDF
    Nowadays, everyone is very busy and running around trying to maintain a balance between their work life and family, as the working hours are increasing day by day. In such hassled life people either ignore or do not give enough attention to a healthy diet. An imperative part of a healthy eating routine is the cognizance and maintenance of nourishing data and comprehension of how extraordinary sustenance and nutritious constituents influence our bodies. Besides in the USA, in many other countries, nutritional information is fundamentally passed on to consumers through nutrition labels (NLs) which can be found in all packaged food products in the form of nutrition table. However, sometimes it turns out to be challenging to utilize this information available in these NLs notwithstanding for consumers who are health conscious as they may not be familiar with nutritional terms and discover it hard to relate nutritional information into their day by day activities because of lack of time, inspiration, or training. So it is essential to automate this information gathering and interpretation procedure by incorporating Machine Learning based algorithm to abstract nutritional information from NLs on the grounds that it enhances the consumer’s capacity to participate in nonstop nutritional information gathering and analysis

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    Off-line Arabic Handwriting Recognition System Using Fast Wavelet Transform

    Get PDF
    In this research, off-line handwriting recognition system for Arabic alphabet is introduced. The system contains three main stages: preprocessing, segmentation and recognition stage. In the preprocessing stage, Radon transform was used in the design of algorithms for page, line and word skew correction as well as for word slant correction. In the segmentation stage, Hough transform approach was used for line extraction. For line to words and word to characters segmentation, a statistical method using mathematic representation of the lines and words binary image was used. Unlike most of current handwriting recognition system, our system simulates the human mechanism for image recognition, where images are encoded and saved in memory as groups according to their similarity to each other. Characters are decomposed into a coefficient vectors, using fast wavelet transform, then, vectors, that represent a character in different possible shapes, are saved as groups with one representative for each group. The recognition is achieved by comparing a vector of the character to be recognized with group representatives. Experiments showed that the proposed system is able to achieve the recognition task with 90.26% of accuracy. The system needs only 3.41 seconds a most to recognize a single character in a text of 15 lines where each line has 10 words on average

    Optical Character Recognition of Printed Persian/Arabic Documents

    Get PDF
    Texts are an important representation of language. Due to the volume of texts generated and the historical value of some documents, it is imperative to use computers to read generated texts, and make them editable and searchable. This task, however, is not trivial. Recreating human perception capabilities in artificial systems like documents is one of the major goals of pattern recognition research. After decades of research and improvements in computing capabilities, humans\u27 ability to read typed or handwritten text is hardly matched by machine intelligence. Although, classical applications of Optical Character Recognition (OCR) like reading machine-printed addresses in a mail sorting machine is considered solved, more complex scripts or handwritten texts push the limits of the existing technology. Moreover, many of the existing OCR systems are language dependent. Therefore, improvements in OCR technologies have been uneven across different languages. Especially, for Persian, there has been limited research. Despite the need to process many Persian historical documents or use of OCR in variety of applications, few Persian OCR systems work with good recognition rate. Consequently, the task of automatically reading Persian typed documents with close-to-human performance is still an open problem and the main focus of this dissertation. In this dissertation, after a literature survey of the existing technology, we propose new techniques in the two important preprocessing steps in any OCR system: Skew detection and Page segmentation. Then, rather than the usual practice of character segmentation, we propose segmentation of Persian documents into sub-words. The choice of sub-word segmentation is to avoid the challenges of segmenting highly cursive Persian texts to isolated characters. For feature extraction, we will propose a hybrid scheme between three commonly used methods and finally use a nonparametric classification method. A large number of papers and patents advertise recognition rates near 100%. Such claims give the impression that automation problems seem to have been solved. Although OCR is widely used, its accuracy today is still far from a child\u27s reading skills. Failure of some real applications show that performance problems still exist on composite and degraded documents and that there is still room for progress

    Neural Networks for Document Image and Text Processing

    Full text link
    Nowadays, the main libraries and document archives are investing a considerable effort on digitizing their collections. Indeed, most of them are scanning the documents and publishing the resulting images without their corresponding transcriptions. This seriously limits the document exploitation possibilities. When the transcription is necessary, it is manually performed by human experts, which is a very expensive and error-prone task. Obtaining transcriptions to the level of required quality demands the intervention of human experts to review and correct the resulting output of the recognition engines. To this end, it is extremely useful to provide interactive tools to obtain and edit the transcription. Although text recognition is the final goal, several previous steps (known as preprocessing) are necessary in order to get a fine transcription from a digitized image. Document cleaning, enhancement, and binarization (if they are needed) are the first stages of the recognition pipeline. Historical Handwritten Documents, in addition, show several degradations, stains, ink-trough and other artifacts. Therefore, more sophisticated and elaborate methods are required when dealing with these kind of documents, even expert supervision in some cases is needed. Once images have been cleaned, main zones of the image have to be detected: those that contain text and other parts such as images, decorations, versal letters. Moreover, the relations among them and the final text have to be detected. Those preprocessing steps are critical for the final performance of the system since an error at this point will be propagated during the rest of the transcription process. The ultimate goal of the Document Image Analysis pipeline is to receive the transcription of the text (Optical Character Recognition and Handwritten Text Recognition). During this thesis we aimed to improve the main stages of the recognition pipeline, from the scanned documents as input to the final transcription. We focused our effort on applying Neural Networks and deep learning techniques directly on the document images to extract suitable features that will be used by the different tasks dealt during the following work: Image Cleaning and Enhancement (Document Image Binarization), Layout Extraction, Text Line Extraction, Text Line Normalization and finally decoding (or text line recognition). As one can see, the following work focuses on small improvements through the several Document Image Analysis stages, but also deals with some of the real challenges: historical manuscripts and documents without clear layouts or very degraded documents. Neural Networks are a central topic for the whole work collected in this document. Different convolutional models have been applied for document image cleaning and enhancement. Connectionist models have been used, as well, for text line extraction: first, for detecting interest points and combining them in text segments and, finally, extracting the lines by means of aggregation techniques; and second, for pixel labeling to extract the main body area of the text and then the limits of the lines. For text line preprocessing, i.e., to normalize the text lines before recognizing them, similar models have been used to detect the main body area and then to height-normalize the images giving more importance to the central area of the text. Finally, Convolutional Neural Networks and deep multilayer perceptrons have been combined with hidden Markov models to improve our transcription engine significantly. The suitability of all these approaches has been tested with different corpora for any of the stages dealt, giving competitive results for most of the methodologies presented.Hoy en día, las principales librerías y archivos está invirtiendo un esfuerzo considerable en la digitalización de sus colecciones. De hecho, la mayoría están escaneando estos documentos y publicando únicamente las imágenes sin transcripciones, limitando seriamente la posibilidad de explotar estos documentos. Cuando la transcripción es necesaria, esta se realiza normalmente por expertos de forma manual, lo cual es una tarea costosa y propensa a errores. Si se utilizan sistemas de reconocimiento automático se necesita la intervención de expertos humanos para revisar y corregir la salida de estos motores de reconocimiento. Por ello, es extremadamente útil para proporcionar herramientas interactivas con el fin de generar y corregir la transcripciones. Aunque el reconocimiento de texto es el objetivo final del Análisis de Documentos, varios pasos previos (preprocesamiento) son necesarios para conseguir una buena transcripción a partir de una imagen digitalizada. La limpieza, mejora y binarización de las imágenes son las primeras etapas del proceso de reconocimiento. Además, los manuscritos históricos tienen una mayor dificultad en el preprocesamiento, puesto que pueden mostrar varios tipos de degradaciones, manchas, tinta a través del papel y demás dificultades. Por lo tanto, este tipo de documentos requiere métodos de preprocesamiento más sofisticados. En algunos casos, incluso, se precisa de la supervisión de expertos para garantizar buenos resultados en esta etapa. Una vez que las imágenes han sido limpiadas, las diferentes zonas de la imagen deben de ser localizadas: texto, gráficos, dibujos, decoraciones, letras versales, etc. Por otra parte, también es importante conocer las relaciones entre estas entidades. Estas etapas del pre-procesamiento son críticas para el rendimiento final del sistema, ya que los errores cometidos en aquí se propagarán al resto del proceso de transcripción. El objetivo principal del trabajo presentado en este documento es mejorar las principales etapas del proceso de reconocimiento completo: desde las imágenes escaneadas hasta la transcripción final. Nuestros esfuerzos se centran en aplicar técnicas de Redes Neuronales (ANNs) y aprendizaje profundo directamente sobre las imágenes de los documentos, con la intención de extraer características adecuadas para las diferentes tareas: Limpieza y Mejora de Documentos, Extracción de Líneas, Normalización de Líneas de Texto y, finalmente, transcripción del texto. Como se puede apreciar, el trabajo se centra en pequeñas mejoras en diferentes etapas del Análisis y Procesamiento de Documentos, pero también trata de abordar tareas más complejas: manuscritos históricos, o documentos que presentan degradaciones. Las ANNs y el aprendizaje profundo son uno de los temas centrales de esta tesis. Diferentes modelos neuronales convolucionales se han desarrollado para la limpieza y mejora de imágenes de documentos. También se han utilizado modelos conexionistas para la extracción de líneas: primero, para detectar puntos de interés y segmentos de texto y, agregarlos para extraer las líneas del documento; y en segundo lugar, etiquetando directamente los píxeles de la imagen para extraer la zona central del texto y así definir los límites de las líneas. Para el preproceso de las líneas de texto, es decir, la normalización del texto antes del reconocimiento final, se han utilizado modelos similares a los mencionados para detectar la zona central del texto. Las imagenes se rescalan a una altura fija dando más importancia a esta zona central. Por último, en cuanto a reconocimiento de escritura manuscrita, se han combinado técnicas de ANNs y aprendizaje profundo con Modelos Ocultos de Markov, mejorando significativamente los resultados obtenidos previamente por nuestro motor de reconocimiento. La idoneidad de todos estos enfoques han sido testeados con diferentes corpus en cada una de las tareas tratadas., obtenieAvui en dia, les principals llibreries i arxius històrics estan invertint un esforç considerable en la digitalització de les seues col·leccions de documents. De fet, la majoria estan escanejant aquests documents i publicant únicament les imatges sense les seues transcripcions, fet que limita seriosament la possibilitat d'explotació d'aquests documents. Quan la transcripció del text és necessària, normalment aquesta és realitzada per experts de forma manual, la qual cosa és una tasca costosa i pot provocar errors. Si s'utilitzen sistemes de reconeixement automàtic es necessita la intervenció d'experts humans per a revisar i corregir l'eixida d'aquests motors de reconeixement. Per aquest motiu, és extremadament útil proporcionar eines interactives amb la finalitat de generar i corregir les transcripcions generades pels motors de reconeixement. Tot i que el reconeixement del text és l'objectiu final de l'Anàlisi de Documents, diversos passos previs (coneguts com preprocessament) són necessaris per a l'obtenció de transcripcions acurades a partir d'imatges digitalitzades. La neteja, millora i binarització de les imatges (si calen) són les primeres etapes prèvies al reconeixement. A més a més, els manuscrits històrics presenten una major dificultat d'analisi i preprocessament, perquè poden mostrar diversos tipus de degradacions, taques, tinta a través del paper i altres peculiaritats. Per tant, aquest tipus de documents requereixen mètodes de preprocessament més sofisticats. En alguns casos, fins i tot, es precisa de la supervisió d'experts per a garantir bons resultats en aquesta etapa. Una vegada que les imatges han sigut netejades, les diferents zones de la imatge han de ser localitzades: text, gràfics, dibuixos, decoracions, versals, etc. D'altra banda, també és important conéixer les relacions entre aquestes entitats i el text que contenen. Aquestes etapes del preprocessament són crítiques per al rendiment final del sistema, ja que els errors comesos en aquest moment es propagaran a la resta del procés de transcripció. L'objectiu principal del treball que estem presentant és millorar les principals etapes del procés de reconeixement, és a dir, des de les imatges escanejades fins a l'obtenció final de la transcripció del text. Els nostres esforços se centren en aplicar tècniques de Xarxes Neuronals (ANNs) i aprenentatge profund directament sobre les imatges de documents, amb la intenció d'extraure característiques adequades per a les diferents tasques analitzades: neteja i millora de documents, extracció de línies, normalització de línies de text i, finalment, transcripció. Com es pot apreciar, el treball realitzat aplica xicotetes millores en diferents etapes de l'Anàlisi de Documents, però també tracta d'abordar tasques més complexes: manuscrits històrics, o documents que presenten degradacions. Les ANNs i l'aprenentatge profund són un dels temes centrals d'aquesta tesi. Diferents models neuronals convolucionals s'han desenvolupat per a la neteja i millora de les dels documents. També s'han utilitzat models connexionistes per a la tasca d'extracció de línies: primer, per a detectar punts d'interés i segments de text i, agregar-los per a extraure les línies del document; i en segon lloc, etiquetant directament els pixels de la imatge per a extraure la zona central del text i així definir els límits de les línies. Per al preprocés de les línies de text, és a dir, la normalització del text abans del reconeixement final, s'han utilitzat models similars als utilitzats per a l'extracció de línies. Finalment, quant al reconeixement d'escriptura manuscrita, s'han combinat tècniques de ANNs i aprenentatge profund amb Models Ocults de Markov, que han millorat significativament els resultats obtinguts prèviament pel nostre motor de reconeixement. La idoneïtat de tots aquests enfocaments han sigut testejats amb diferents corpus en cadascuna de les tasques tractadPastor Pellicer, J. (2017). Neural Networks for Document Image and Text Processing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90443TESI

    Extraction of textual information from image for information retrieval

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore