2,132 research outputs found

    Localized Regression

    Get PDF
    The main problem with localized discriminant techniques is the curse of dimensionality, which seems to restrict their use to the case of few variables. This restriction does not hold if localization is combined with a reduction of dimension. In particular it is shown that localization yields powerful classifiers even in higher dimensions if localization is combined with locally adaptive selection of predictors. A robust localized logistic regression (LLR) method is developed for which all tuning parameters are chosen dataÂĄadaptively. In an extended simulation study we evaluate the potential of the proposed procedure for various types of data and compare it to other classification procedures. In addition we demonstrate that automatic choice of localization, predictor selection and penalty parameters based on cross validation is working well. Finally the method is applied to real data sets and its real world performance is compared to alternative procedures

    On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: an application of flexible sampling methods using neural networks

    Get PDF
    Likelihoods and posteriors of instrumental variable regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating such contours using Monte Carlo integration methods like importance sampling or Markov chain Monte Carlo procedures the speed of the algorithm and the quality of the results greatly depend on the choice of the importance or candidate density. Such a density has to be `close' to the target density in order to yield accurate results with numerically efficient sampling. For this purpose we introduce neural networks which seem to be natural importance or candidate densities, as they have a universal approximation property and are easy to sample from. A key step in the proposed class of methods is the construction of a neural network that approximates the target density accurately. The methods are tested on a set of illustrative models. The results indicate the feasibility of the neural network approach

    OCDaf: Ordered Causal Discovery with Autoregressive Flows

    Full text link
    We propose OCDaf, a novel order-based method for learning causal graphs from observational data. We establish the identifiability of causal graphs within multivariate heteroscedastic noise models, a generalization of additive noise models that allow for non-constant noise variances. Drawing upon the structural similarities between these models and affine autoregressive normalizing flows, we introduce a continuous search algorithm to find causal structures. Our experiments demonstrate state-of-the-art performance across the Sachs and SynTReN benchmarks in Structural Hamming Distance (SHD) and Structural Intervention Distance (SID). Furthermore, we validate our identifiability theory across various parametric and nonparametric synthetic datasets and showcase superior performance compared to existing baselines

    Bayesian mixed-effects inference on classification performance in hierarchical data sets

    Get PDF
    Classification algorithms are frequently used on data with a natural hierarchical structure. For instance, classifiers are often trained and tested on trial-wise measurements, separately for each subject within a group. One important question is how classification outcomes observed in individual subjects can be generalized to the population from which the group was sampled. To address this question, this paper introduces novel statistical models that are guided by three desiderata. First, all models explicitly respect the hierarchical nature of the data, that is, they are mixed-effects models that simultaneously account for within-subjects (fixed-effects) and across-subjects (random-effects) variance components. Second, maximum-likelihood estimation is replaced by full Bayesian inference in order to enable natural regularization of the estimation problem and to afford conclusions in terms of posterior probability statements. Third, inference on classification accuracy is complemented by inference on the balanced accuracy, which avoids inflated accuracy estimates for imbalanced data sets. We introduce hierarchical models that satisfy these criteria and demonstrate their advantages over conventional methods usingMCMC implementations for model inversion and model selection on both synthetic and empirical data. We envisage that our approach will improve the sensitivity and validity of statistical inference in future hierarchical classification studies. © 2012

    A Geometric Variational Approach to Bayesian Inference

    Get PDF
    We propose a novel Riemannian geometric framework for variational inference in Bayesian models based on the nonparametric Fisher-Rao metric on the manifold of probability density functions. Under the square-root density representation, the manifold can be identified with the positive orthant of the unit hypersphere in L2, and the Fisher-Rao metric reduces to the standard L2 metric. Exploiting such a Riemannian structure, we formulate the task of approximating the posterior distribution as a variational problem on the hypersphere based on the alpha-divergence. This provides a tighter lower bound on the marginal distribution when compared to, and a corresponding upper bound unavailable with, approaches based on the Kullback-Leibler divergence. We propose a novel gradient-based algorithm for the variational problem based on Frechet derivative operators motivated by the geometry of the Hilbert sphere, and examine its properties. Through simulations and real-data applications, we demonstrate the utility of the proposed geometric framework and algorithm on several Bayesian models

    Neural network based approximations to posterior densities: a class of flexible sampling methods with applications to reduced rank models

    Get PDF
    Likelihoods and posteriors of econometric models with strong endogeneity and weak instruments may exhibit rather non-elliptical contours in the parameter space. This feature also holds for cointegration models when near non-stationarity occurs and determining the number of cointegrating relations is a nontrivial issue, and in mixture processes where the modes are relatively far apart. The performance of Monte Carlo integration methods like importance sampling or Markov Chain Monte Carlo procedures greatly depends in all these cases on the choice of the importance or candidate density. Such a density has to be `close' to the target density in order to yield numerically accurate results with efficient sampling. Neural networks seem to be natural importance or candidate densities, as they have a universal approximation property and are easy to sample from. That is, conditionally upon the specification of the neural network, sampling can be done either directly or using a Gibbs sampling technique, possibly using auxiliary variables. A key step in the proposed class of methods is the construction of a neural network that approximates the target density accurately. The methods are tested on a set of illustrative models which include a mixture of normal distributions, a Bayesian instrumental variable regression problem with weak instruments and near non-identification, a cointegration model with near non-stationarity and a two-regime growth model for US recessions and expansions. These examples involve experiments with non-standard, non-elliptical posterior distributions. The results indicate the feasibility of the neural network approach

    A comparison study of distribution-free multivariate SPC methods for multimode data

    Get PDF
    The data-rich environments of industrial applications lead to large amounts of correlated quality characteristics that are monitored using Multivariate Statistical Process Control (MSPC) tools. These variables usually represent heterogeneous quantities that originate from one or multiple sensors and are acquired with different sampling parameters. In this framework, any assumptions relative to the underlying statistical distribution may not be appropriate, and conventional MSPC methods may deliver unacceptable performances. In addition, in many practical applications, the process switches from one operating mode to a different one, leading to a stream of multimode data. Various nonparametric approaches have been proposed for the design of multivariate control charts, but the monitoring of multimode processes remains a challenge for most of them. In this study, we investigate the use of distribution-free MSPC methods based on statistical learning tools. In this work, we compared the kernel distance-based control chart (K-chart) based on a one-class-classification variant of support vector machines and a fuzzy neural network method based on the adaptive resonance theory. The performances of the two methods were evaluated using both Monte Carlo simulations and real industrial data. The simulated scenarios include different types of out-of-control conditions to highlight the advantages and disadvantages of the two methods. Real data acquired during a roll grinding process provide a framework for the assessment of the practical applicability of these methods in multimode industrial applications

    CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS

    Get PDF
    The book collects the short papers presented at the 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Statistics, Computer Science and Applications of the University of Florence, under the auspices of the Italian Statistical Society and the International Federation of Classification Societies (IFCS). CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-based classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research
    • 

    corecore