4,702 research outputs found

    Location of leaks in pipelines using parameter identification tools

    Full text link
    This work proposes an approach to locate leaks by identifying the parameters of finite models associated with these fault events. The identification problem is attacked by using well-known identification methods such as the Prediction Error Method and extended Kalman filters. In addition, a frequency evaluation is realized to check the conditions for implementing any method which require an excitation condition.Comment: This paper has some error

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Pipeline network features and leak detection by cross-correlation analysis of reflected waves

    Get PDF
    This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave

    Leak localization in water distribution networks using a mixed model-based/data-driven approach

    Get PDF
    “The final publication is available at Springer via http://dx.doi.org/10.1016/j.conengprac.2016.07.006”This paper proposes a new method for leak localization in water distribution networks (WDNs). In a first stage, residuals are obtained by comparing pressure measurements with the estimations provided by a WDN model. In a second stage, a classifier is applied to the residuals with the aim of determining the leak location. The classifier is trained with data generated by simulation of the WDN under different leak scenarios and uncertainty conditions. The proposed method is tested both by using synthetic and experimental data with real WDNs of different sizes. The comparison with the current existing approaches shows a performance improvement.Peer ReviewedPostprint (author's final draft

    Network Inspection for Detecting Strategic Attacks

    Full text link
    This article studies a problem of strategic network inspection, in which a defender (agency) is tasked with detecting the presence of multiple attacks in the network. An inspection strategy entails monitoring the network components, possibly in a randomized manner, using a given number of detectors. We formulate the network inspection problem (P)(\mathcal{P}) as a large-scale bilevel optimization problem, in which the defender seeks to determine an inspection strategy with minimum number of detectors that ensures a target expected detection rate under worst-case attacks. We show that optimal solutions of (P)(\mathcal{P}) can be obtained from the equilibria of a large-scale zero-sum game. Our equilibrium analysis involves both game-theoretic and combinatorial arguments, and leads to a computationally tractable approach to solve (P)(\mathcal{P}). Firstly, we construct an approximate solution by utilizing solutions of minimum set cover (MSC) and maximum set packing (MSP) problems, and evaluate its detection performance. In fact, this construction generalizes some of the known results in network security games. Secondly, we leverage properties of the optimal detection rate to iteratively refine our MSC/MSP-based solution through a column generation procedure. Computational results on benchmark water networks demonstrate the scalability, performance, and operational feasibility of our approach. The results indicate that utilities can achieve a high level of protection in large-scale networks by strategically positioning a small number of detectors

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD

    Multiple Surface Pipeline Leak Detection Using Real-Time Sensor Data Analysis

    Get PDF
    Pipelines enable the largest volume of both intra and international transportation of oil and gas and play critical roles in the energy sufficiency of countries. The biggest drawback with the use of pipelines for oil and gas transportation is the problem of oil spills whenever the pipelines lose containment. The severity of the oil spill on the environment is a function of the volume of the spill and this is a function of the time taken to detect the leak and contain the spill from the pipeline. A single leak on the Enbridge pipeline spilled 3.3 million liters into the Kalamazoo river while a pipeline rupture in North Dakota which went undetected for 143 days spilled 29 million gallons into the environment.Several leak detection systems (LDS) have been developed with the capacity for rapid detection and localization of pipeline leaks, but the characteristics of these LDS limit their leak detection capability. Machine learning provides an opportunity to develop faster LDS, but it requires access to pipeline leak datasets that are proprietary in nature and not readily available. Current LDS have difficulty in detecting low-volume/low-pressure spills located far away from the inlet and outlet pressure sensors. Some reasons for this include the following, leak induced pressure variation generated by these leaks is dissipated before it gets to the inlet and outlet pressure sensors, another reason is that the LDS are designed for specific minimum detection levels which is a percentage of the flow volume of the pipeline, so when the leak falls below the LDS minimum detection value, the leak will not be detected. Perturbations generated by small volume leaks are often within the threshold values of the pipeline\u27s normal operational envelop as such the LDS disregards these perturbations. These challenges have been responsible for pipeline leaks going on for weeks only to be detected by third-party persons in the vicinity of the leaks. This research has been able to develop a framework for the generation of pipeline datasets using the PIPESIM software and the RAND function in Python. The topological data of the pipeline right of way, the pipeline network design specification, and the fluid flow properties are the required information for this framework. With this information, leaks can be simulated at any point on the pipeline and the datasets generated. This framework will facilitate the generation of the One-class dataset for the pipeline which can be used for the development of LDS using machine learning. The research also developed a leak detection topology for detecting low-volume leaks. This topology comprises of the installation of a pressure sensor with remote data transmission capacity at the midpoint of the line. The sensor utilizes the exception-based transmission scheme where it only transmits when the new data differs from the existing data value. This will extend the battery life of the sensor. The installation of the sensor at the midpoint of the line was found to increase the sensitivity of the LDS to leak-induced pressure variations which were traditionally dissipated before getting to the Inlet/outlet sensors. The research also proposed the development of a Leak Detection as a Service (LDaaS) platform where the pressure data from the inlet and the midpoint sensors are collated and subjected to a specially developed leak detection algorithm for the detection of pipeline leaks. This leak detection topology will enable operators to detect low-volume/low-pressure leaks that would have been missed by the existing leak detection system and deploy the oil spill response plans quicker thus reducing the volume of oil spilled into the environment. It will also provide a platform for regulators to monitor the leak alerts as they are generated and enable them to evaluate the oil spill response plans of the operators

    Optimal sensor placement for classifier-based leak localization in drinking water networks

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a sensor placement method for classifier-based leak localization in Water Distribution Networks. The proposed approach consists in applying a Genetic Algorithm to decide the sensors to be used by a classifier (based on the k-Nearest Neighbor approach). The sensors are placed in an optimal way maximizing the accuracy of the leak localization. The results are illustrated by means of the application to the Hanoi District Metered Area and they are compared to the ones obtained by the Exhaustive Search Algorithm. A comparison with the results of a previous optimal sensor placement method is provided as well.Postprint (author's final draft
    corecore