5,215 research outputs found

    Examining the potential of floating car data for dynamic traffic management

    Get PDF
    Traditional traffic monitoring systems are mostly based on road side equipment (RSE) measuring traffic conditions throughout the day. With more and more GPS-enabled connected devices, floating car data (FCD) has become an interesting source of traffic information, requiring only a fraction of the RSE infrastructure investment. While FCD is commonly used to derive historic travel times on individual roads and to evaluate other traffic data and algorithms, it could also be used in traffic management systems directly. However, as live systems only capture a small percentage of all traffic, its use in live operating systems needs to be examined. Here, the authors investigate the potential of FCD to be used as input data for live automated traffic management systems. The FCD in this study is collected by a live country-wide FCD system in the Netherlands covering 6-8% of all vehicles. The (anonymised) data is first compared to available road side measurements to show the current quality of FCD. It is then used in a dynamic speed management system and compared to the installed system on the studied highway. Results indicate the FCD set-up can approximate the installed system, showing the feasibility of a live system

    Feasibility of expanding traffic monitoring systems with floating car data technology

    Get PDF
    Trajectory information reported by certain vehicles (Floating Car Data or FCD) can be applied to monitor the road network. Policy makers face difficulties when deciding to invest in the expansion of their infrastructure based on inductive loops and cameras, or to invest in a FCD system. This paper targets this decision. The provided FCD functionality is investigated, minimum requirements are determined and reliability issues are researched. The communication cost is derived and combined with other elements to assess the total costs for different scenarios. The outcome is to target a penetration rate of 1%, a sample interval of 10 seconds and a transmission interval of 30 seconds. Such a deployment can accurately determine the locations of incidents and traffic jams. It can also estimate travel times accurately for highways, for urban roads this is limited to a binary categorization into normal or congested traffic. No reliability issues are expected. The most cost efficient scenario when deploying a new FCD system is to launch a smartphone application. For Belgium, this costs 13 million EUR for 10 years. However, it is estimated that purchasing data from companies already acquiring FCD data through their own product could reduce costs with a factor 10

    Comparison between Floating Car Data and Infrastructure Sensors for Traffic Speed Estimation

    Get PDF
    The development of new generation Intelligent Vehicle Technologies will enable a better level of road safety and CO2 emission reductions. However, the bottleneck of all of these systems is the need of a comprehensive and reliable data. For traffic data acquisition, two sources are available today: infrastructure sensors and floating vehicles. The first ones consist on a set of static underground sensors installed in the roads; the second ones consist of the use of intelligent vehicles as mobile sensors. Both of them make use of different communication systems, V2V, V2I and I2I. In this paper we present a comparison of the performance of both kinds of traffic data source for road traffic speed estimation. A set of real experiments has been performed in several traffic conditions, using infrastructure sensors and the information retrieved by one instrumented intelligent vehicle. After processing these data, the results show the better accuracy of the floating cat data as well as its low cost in the case of a massive implantation

    Speed data collection methods: a review

    Get PDF
    Various studies have been focusing on a wide range of techniques to detect traffic flow characteristics, like speed and travel times. Therefore, a key aspect to obtain statistically significant set of data is to observe and record driver behaviours in real world. To collect traffic data, traditional methods of traffic measurement - such as detection stations, radar guns or video cameras - have been used over the years. Other innovative methods refer to probe vehicles equipped with GPS devices and/or cameras, which allow continuous surveys along the entire road route. While point-based devices provide information of the entire flow, just in the section in which they are installed and only in the time domain, probe vehicles data are referred both to temporal and space domains but ignore traffic conditions. Obviously, it is necessary that the data collected refer to representative samples, by number and composition, of the user population. The paper proposes a review of the most used methods for speed data collection, highlighting the advantages and disadvantages of each experimental approach. Accordingly, the comparison illustrates the best relief method to be adopted depending on the research and investigation that will be performed

    Measuring delays for bicycles at signalized intersections using smartphone GPS tracking data

    Get PDF
    The article describes an application of global positioning system (GPS) tracking data (floating bike data) for measuring delays for cyclists at signalized intersections. For selected intersections, we used trip data collected by smartphone tracking to calculate the average delay for cyclists by interpolation between GPS locations before and after the intersection. The outcomes were proven to be stable for different strategies in selecting the GPS locations used for calculation, although GPS locations too close to the intersection tended to lead to an underestimation of the delay. Therefore, the sample frequency of the GPS tracking data is an important parameter to ensure that suitable GPS locations are available before and after the intersection. The calculated delays are realistic values, compared to the theoretically expected values, which are often applied because of the lack of observed data. For some of the analyzed intersections, however, the calculated delays lay outside of the expected range, possibly because the statistics assumed a random arrival rate of cyclists. This condition may not be met when, for example, bicycles arrive in platoons because of an upstream intersection. This justifies that GPS-based delays can form a valuable addition to the theoretically expected values

    Floating car data augmentation based on infrastructure sensors and neural networks

    Get PDF
    The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles
    • …
    corecore