194,565 research outputs found

    Reconfiguring smart structures using approximate heteroclinic connections

    Get PDF
    A new method is investigated to reconfigure smart structures using the technique of polynomial series to approximate a true heteroclinic connection between unstable equilibria in a smart structure model. We explore the use of polynomials of varying order to first approximate the heteroclinic connection between two equal-energy, unstable equilibrium points, and then develop an inverse method to control the dynamics of the system to track the reference polynomial trajectory. It is found that high-order polynomials can provide a good approximation to heteroclinic connections and provide an efficient means of generating such trajectories. The method is used first in a simple smart structure model to illustrate the method and is then extended to a more complex model where the numerical generation of true heteroclinic connections is difficult. It is envisaged that being computationally efficient, the method could form the basis for real-time reconfiguration of smart structures using heteroclinic connections between equal-energy, unstable configurations

    Characterizing Driving Context from Driver Behavior

    Full text link
    Because of the increasing availability of spatiotemporal data, a variety of data-analytic applications have become possible. Characterizing driving context, where context may be thought of as a combination of location and time, is a new challenging application. An example of such a characterization is finding the correlation between driving behavior and traffic conditions. This contextual information enables analysts to validate observation-based hypotheses about the driving of an individual. In this paper, we present DriveContext, a novel framework to find the characteristics of a context, by extracting significant driving patterns (e.g., a slow-down), and then identifying the set of potential causes behind patterns (e.g., traffic congestion). Our experimental results confirm the feasibility of the framework in identifying meaningful driving patterns, with improvements in comparison with the state-of-the-art. We also demonstrate how the framework derives interesting characteristics for different contexts, through real-world examples.Comment: Accepted to be published at The 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2017
    • …
    corecore