2,006 research outputs found

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Performance of the Two-Source Energy Balance (TSEB) Model as a Tool for Monitoring the Response of Durum Wheat to Drought by High-Throughput Field Phenotyping

    Get PDF
    The current lack of efficient methods for high throughput field phenotyping is a constraint on the goal of increasing durum wheat yields. This study illustrates a comprehensive methodology for phenotyping this crop's water use through the use of the two-source energy balance (TSEB) model employing very high resolution imagery. An unmanned aerial vehicle (UAV) equipped with multispectral and thermal cameras was used to phenotype 19 durum wheat cultivars grown under three contrasting irrigation treatments matching crop evapotranspiration levels (ETc): 100%ETc treatment meeting all crop water requirements (450 mm), 50%ETc treatment meeting half of them (285 mm), and a rainfed treatment (122 mm). Yield reductions of 18.3 and 48.0% were recorded in the 50%ETc and rainfed treatments, respectively, in comparison with the 100%ETc treatment. UAV flights were carried out during jointing (April 4th), anthesis (April 30th), and grain-filling (May 22nd). Remotely-sensed data were used to estimate: (1) plant height from a digital surface model (H, R2 = 0.95, RMSE = 0.18m), (2) leaf area index from multispectral vegetation indices (LAI, R2 = 0.78, RMSE = 0.63), and (3) actual evapotranspiration (ETa) and transpiration (T) through the TSEB model (R2 = 0.50, RMSE = 0.24 mm/h). Compared with ground measurements, the four traits estimated at grain-filling provided a good prediction of days from sowing to heading (DH, r = 0.58–0.86), to anthesis (DA, r = 0.59–0.85) and to maturity (r = 0.67–0.95), grain-filling duration (GFD, r = 0.54–0.74), plant height (r = 0.62–0.69), number of grains per spike (NGS, r = 0.41–0.64), and thousand kernel weight (TKW, r = 0.37–0.42). The best trait to estimate yield, DH, DA, and GFD was ETa at anthesis or during grain filling. Better forecasts for yield-related traits were recorded in the irrigated treatments than in the rainfed one. These results show a promising perspective in the use of energy balance models for the phenotyping of large numbers of durum wheat genotypes under Mediterranean conditions.info:eu-repo/semantics/publishedVersio

    The role of remote sensing in assessing the impact of climate variability on vegetation dynamics in Europe

    Get PDF
    Tese de doutoramento em Ciências Geofísicas e da Geoinformação (Detecção Remota), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008The study aims at investigating the relationship between climate variability and vegetation dynamics by combining meteorological and remote-sensed information. The vegetation response to both precipitation and temperature in two contrasting areas (Northeastern Europe and the Iberian Peninsula) of the European continent is analysed and special attention is devoted to the impact of the North Atlantic Oscillation (NAO) on the vegetative cycle in the two regions which is assessed taking into account the different land cover types and the respective responses to climate variability. An analysis is performed of the impact of climate variability on wheat yield in Portugal and. the role of NAO and of relevant meteorological variables (net solar radiation, temperature and precipitation) is investigated. Using spring NDVI and NAO in June as predictors, a simple regression model of wheat yield is built up that shows a general good agreement between observed and modelled wheat yield values. The severity of a given drought episode in Portugal is assessed by evaluating the cumulative impact over time of negative anomalies of NDVI. Special attention is devoted to the drought episodes of 1999, 2002 and 2005. While in the case of the drought episode of 1999 the scarcity of water in the soil persisted until spring, the deficit in greenness in 2005 was already apparent at the end of summer. Although the impact of dry periods on vegetation is clearly noticeable in both arable land and forest, the latter vegetation type shows a higher sensitivity to drought conditions. Persistence of negative anomalies of NDVI was also used to develop a procedure aiming to identify burned scars in Portugal and then assess vegetation recovery over areas stricken by large wildfires. The vulnerability of land cover to wildfire is assessed and a marked contrast is found between forest and shrubland vs. arable land and crops. Vegetation recovery reveals to strongly depend on meteorological conditions of the year following the fire event, being especially affected in case of a drought event.Fundação para a Ciência e Tecnologia (FCT), (SFRH/BD/32829/2006

    Climate Change Impacts on Agriculture in Europe

    Get PDF
    COST Action 734 was launched thanks to the coordinated activity of 29 EU countries. The main objective of the Action was the evaluation of impacts from climate change and variability on agriculture for various European areas. Secondary objectives were: collection and review of existing agroclimatic indices and simulation models, to assess hazard impacts on European agricultural areas; to apply climate scenarios for the next few decades; the definition of harmonised criteria to evaluate the impacts of climate change and variability on agriculture; the definition of warning systems guidelines. Based on the result, possible actions (specific recommendations, suggestions, warning systems) were elaborated and proposed to the end-users, depending on their needs

    Evaluating spectral indices for winter wheat health status monitoring in Bloemfontein using Lsat 8 data

    Get PDF
    Monitoring wheat growth under different weather and ecological conditions is vital for a reliable supply of wheat yield estimations. Remote sensing techniques have been applied in the agricultural sector for monitoring crop biophysical properties and predicting crop yields. This study explored the application of Land Surface Temperature (LST)-vegetation index relationships for winter wheat in order to determine indices that are sensitive to changes in the wheat health status. The indices were derived from Landsat 8 scenes over the wheat growing area across Bloemfontein, South Africa. The vegetation abundance indices evaluated were the Normalised Difference Vegetation Index (NDVI) and the Green Normalised Difference Vegetation Index (GNDVI). The moisture indices evaluated were the Normalised Difference Water Index (NDWI) and the Normalised Difference Moisture Index (NDMI). The results demonstrated that LST exhibited an opposing trend with the vegetation abundance indices and an analogous trend with the moisture indices. Furthermore, NDVI proved to be a better index for winter wheat abundance as compared to the GNDVI. The NDWI proved to be a better index for determining water stress in winter wheat as compared to the NDMI. These results indicate that NDVI and NDWI are very sensitive to LST. These indices can be comprehensive indicators for winter wheat health status. These pilot results prove that LST-vegetation index relationships can be used for agricultural applications with a high level of accuracy

    Remote Sensing as a Precision Farming Tool in the Nile Valley, Egypt

    Get PDF
    Detecting stress in plants resulting from different stressors including nitrogen deficiency, salinity, moisture, contamination and diseases, is crucial in crop production. In the Nile Valley, crop production is hindered perhaps more fundamentally by issues of water supply and salinity. Predicting stress in crops by conventional methods is tedious, laborious and costly and is perhaps unreliable in providing a spatial context of stress patterns. Accurate and quick monitoring techniques for crop status to detect stress in crops at early growth stages are needed to maximize crop productivity. In this context, remotely sensed data may provide a useful tool in precision farming. This research aims to evaluate the role of in situ hyperspectral and high spatial resolution satellite remote sensing data to detect stress in wheat and maize crops and assess whether moisture induced stress can be distinguished from salinity induced stress spectrally. A series of five greenhouse based experiments on wheat and maize were undertaken subjecting both crops to a range of salinity and moisture stress levels. Spectroradiometry measurements were collected at different growth stages of each crop to assess the relationship between crop biophysical and biochemical properties and reflectance measurements from plant canopies. Additionally, high spatial resolution satellite images including two QuickBird, one ASTER and two SPOT HRV were acquired in south-west Alexandria, Egypt to assess the potential of high spectral and spatial resolution satellite imagery to detect stress in wheat and maize at local and regional scales. Two field work visits were conducted in Egypt to collect ground reference data and coupled with Hyperion imagery acquisition, during winter and summer seasons of 2007 in March (8-30: wheat) and July (12-17: maize). Despite efforts, Hyperion imagery was not acquired due to factors out with the control of this research. Strong significant correlations between crop properties and different vegetation indices derived from both ground based and satellite platforms were observed. RDVI showed a sensitive index to different wheat properties (r > 0.90 with different biophysical properties). In maize, GNDVIbr and Cgreen had strong significant correlations with maize biophysical properties (r > 0.80). PCA showed the possibility to distinguish between moisture and salinity induced stress at the grain filling stages. The results further showed that a combined approach of high (2-5 m) and moderate (15-20) spatial resolution satellite imagery can provide a better mechanistic interpretation of the distribution and sources of stress, despite the typical small size of fields (20-50 m scale). QuickBird imagery successfully detects stress within field and local scales, whereas SPOT HRV imagery is useful in detecting stress at a regional scale, and therefore, can be a robust tool in identifying issues of crop management at a regional scale. Due to the limited spectral capabilities of high spatial resolution images, distinguishing different sources of stress is not directly possible, and therefore, hyperspectral satellite imagery (e.g. Hyperion or HyspIRI) is required to distinguish between moisture and salinity induced stress. It is evident from the results that remotely sensed data acquired by both in situ hyperspectral and high spatial resolution satellite remote sensing can be used as a useful tool in precision farming in the Nile Valley, Egypt. A combined approach of using reliable high spatial and spectral satellite remote sensing data could provide better insight about stress at local and regional scales. Using this technique as a precision farming and management tool will lead to improved crop productivity by limiting stress and consequently provide a valuable tool in combating issues of food supply at a time of rapid population growth

    Bibliography of Assorted Institute of Agriculture and Natural Resources Publications

    Get PDF

    Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Get PDF
    Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.JRC.H.4-Monitoring Agricultural Resource

    The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts

    Get PDF
    To effectively meet growing food demands, the global agronomic community will require a better understanding of factors that are currently limiting crop yields and where production can be viably expanded with minimal environmental consequences. Remote sensing can inform these analyses, providing valuable spatiotemporal information about yield-limiting moisture conditions and crop response under current climate conditions. In this paper we study correlations for the period 2003-2013 between yield estimates for major crops grown in Brazil and the Evaporative Stress Index (ESI) - an indicator of agricultural drought that describes anomalies in the actual/reference evapotranspiration (ET) ratio, retrieved using remotely sensed inputs of land surface temperature (LST) and leaf area index (LAI). The strength and timing of peak ESI-yield correlations are compared with results using remotely sensed anomalies in water supply (rainfall from the Tropical Rainfall Mapping Mission; TRMM) and biomass accumulation (LAI from the Moderate Resolution Imaging Spectroradiometer; MODIS). Correlation patterns were generally similar between all indices, both spatially and temporally, with the strongest correlations found in the south and northeast where severe flash droughts have occurred over the past decade, and where yield variability was the highest. Peak correlations tended to occur during sensitive crop growth stages. At the state scale, the ESI provided higher yield correlations for most crops and regions in comparison with TRMM and LAI anomalies. Using finer scale yield estimates reported at the municipality level, ESI correlations with soybean yields peaked higher and earlier by 10 to 25 days in comparison to TRMM and LAI, respectively. In most states, TRMM peak correlations were marginally higher on average with municipality-level annual corn yield estimates, although these estimates do not distinguish between primary and late season harvests. A notable exception occurred in the northeastern state of Bahia, where the ESI better captured effects of rapid cycling of moisture conditions on corn yields during a series of flash drought events. The results demonstrate that for monitoring agricultural drought in Brazil, value is added by combining LAI with LST indicators within a physically based model of crop water use. Published by Elsevier Inc.Embrapa Visiting Scientist Program ; Labex US, an international scientific cooperation program - Brazilian Agricultural Research Corporation - Embrapa, ; United States Department of Agriculture (USDA
    • …
    corecore