2,305 research outputs found

    Multi-objective design optimisation of a 3D-rail stamping process using a robust multi-objective optimisation platform (RMOP)

    Get PDF
    The paper investigates the multi-objective design optimisation of a stamping process to control the final shape and the final quality using advanced high strength steels. The design problem of the stamping process is formulated to minimise the difference between the desired shape and the final geometry obtained by numerical simulation accounting elastic springback. In addition, the final product quality is maximised by improving safety zones without wrinkling, thinning, or failure. Numerical results show that the proposed methodology improves the final product quality while reduces its springback.Peer ReviewedPostprint (published version

    NEFI: Network Extraction From Images

    Full text link
    Networks and network-like structures are amongst the central building blocks of many technological and biological systems. Given a mathematical graph representation of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to graphs describing large scale networks such as social networks, protein-interaction networks, etc. In these applications, graph acquisition, i.e., the extraction of a mathematical graph from a network, is relatively simple. However, for many network-like structures, e.g. leaf venations, slime molds and mud cracks, data collection relies on images where graph extraction requires domain-specific solutions or even manual. Here we introduce Network Extraction From Images, NEFI, a software tool that automatically extracts accurate graphs from images of a wide range of networks originating in various domains. While there is previous work on graph extraction from images, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners from many disciplines to easily extract graph representations from images by supplying flexible tools from image processing, computer vision and graph theory bundled in a convenient package. Thus, NEFI constitutes a scalable alternative to tedious and error-prone manual graph extraction and special purpose tools. We anticipate NEFI to enable the collection of larger datasets by reducing the time spent on graph extraction. The analysis of these new datasets may open up the possibility to gain new insights into the structure and function of various types of networks. NEFI is open source and available http://nefi.mpi-inf.mpg.de

    Likelihood-Free Parallel Tempering

    Full text link
    Approximate Bayesian Computational (ABC) methods (or likelihood-free methods) have appeared in the past fifteen years as useful methods to perform Bayesian analyses when the likelihood is analytically or computationally intractable. Several ABC methods have been proposed: Monte Carlo Markov Chains (MCMC) methods have been developped by Marjoramet al. (2003) and by Bortotet al. (2007) for instance, and sequential methods have been proposed among others by Sissonet al. (2007), Beaumont et al. (2009) and Del Moral et al. (2009). Until now, while ABC-MCMC methods remain the reference, sequential ABC methods have appeared to outperforms them (see for example McKinley et al. (2009) or Sisson et al. (2007)). In this paper a new algorithm combining population-based MCMC methods with ABC requirements is proposed, using an analogy with the Parallel Tempering algorithm (Geyer, 1991). Performances are compared with existing ABC algorithms on simulations and on a real example

    Computer science I like proceedings of miniconference on 4.11.2011

    Get PDF
    corecore