3,526 research outputs found

    Gabor Barcodes for Medical Image Retrieval

    Full text link
    In recent years, advances in medical imaging have led to the emergence of massive databases, containing images from a diverse range of modalities. This has significantly heightened the need for automated annotation of the images on one side, and fast and memory-efficient content-based image retrieval systems on the other side. Binary descriptors have recently gained more attention as a potential vehicle to achieve these goals. One of the recently introduced binary descriptors for tagging of medical images are Radon barcodes (RBCs) that are driven from Radon transform via local thresholding. Gabor transform is also a powerful transform to extract texture-based information. Gabor features have exhibited robustness against rotation, scale, and also photometric disturbances, such as illumination changes and image noise in many applications. This paper introduces Gabor Barcodes (GBCs), as a novel framework for the image annotation. To find the most discriminative GBC for a given query image, the effects of employing Gabor filters with different parameters, i.e., different sets of scales and orientations, are investigated, resulting in different barcode lengths and retrieval performances. The proposed method has been evaluated on the IRMA dataset with 193 classes comprising of 12,677 x-ray images for indexing, and 1,733 x-rays images for testing. A total error score as low as 351351 (≈80%\approx 80\% accuracy for the first hit) was achieved.Comment: To appear in proceedings of The 2016 IEEE International Conference on Image Processing (ICIP 2016), Sep 25-28, 2016, Phoenix, Arizona, US

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    A Convolutional Neural Network model based on Neutrosophy for Noisy Speech Recognition

    Full text link
    Convolutional neural networks are sensitive to unknown noisy condition in the test phase and so their performance degrades for the noisy data classification task including noisy speech recognition. In this research, a new convolutional neural network (CNN) model with data uncertainty handling; referred as NCNN (Neutrosophic Convolutional Neural Network); is proposed for classification task. Here, speech signals are used as input data and their noise is modeled as uncertainty. In this task, using speech spectrogram, a definition of uncertainty is proposed in neutrosophic (NS) domain. Uncertainty is computed for each Time-frequency point of speech spectrogram as like a pixel. Therefore, uncertainty matrix with the same size of spectrogram is created in NS domain. In the next step, a two parallel paths CNN classification model is proposed. Speech spectrogram is used as input of the first path and uncertainty matrix for the second path. The outputs of two paths are combined to compute the final output of the classifier. To show the effectiveness of the proposed method, it has been compared with conventional CNN on the isolated words of Aurora2 dataset. The proposed method achieves the average accuracy of 85.96 in noisy train data. It is more robust against Car, Airport and Subway noises with accuracies 90, 88 and 81 in test sets A, B and C, respectively. Results show that the proposed method outperforms conventional CNN with the improvement of 6, 5 and 2 percentage in test set A, test set B and test sets C, respectively. It means that the proposed method is more robust against noisy data and handle these data effectively.Comment: International conference on Pattern Recognition and Image Analysis (IPRIA 2019

    Barcode Annotations for Medical Image Retrieval: A Preliminary Investigation

    Full text link
    This paper proposes to generate and to use barcodes to annotate medical images and/or their regions of interest such as organs, tumors and tissue types. A multitude of efficient feature-based image retrieval methods already exist that can assign a query image to a certain image class. Visual annotations may help to increase the retrieval accuracy if combined with existing feature-based classification paradigms. Whereas with annotations we usually mean textual descriptions, in this paper barcode annotations are proposed. In particular, Radon barcodes (RBC) are introduced. As well, local binary patterns (LBP) and local Radon binary patterns (LRBP) are implemented as barcodes. The IRMA x-ray dataset with 12,677 training images and 1,733 test images is used to verify how barcodes could facilitate image retrieval.Comment: To be published in proceedings of The IEEE International Conference on Image Processing (ICIP 2015), September 27-30, 2015, Quebec City, Canad
    • …
    corecore