352 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Joint detection and channel estimation for MIMO systems with SC-FDE modulations

    Get PDF
    SC modulation (Single-Carrier) with FDE (Frequency-Domain Equalization) allows excellent performance in severely time-dispersive channels, provided that accurate channel estimates are available at the receiver. For this purpose, pilot symbols and/or training sequences are usually multiplexed with data symbols, which lead to spectral degradation. As an alternative, we can use implicit pilots (i.e., pilots superimposed to data). In this paper we consider MIMO SC-FDE systems where the channel estimation is based on either explicit or implicit pilots, for comparison purposes. An iterative receiver with joint equalization, turbo decoding and channel estimation was employed for optimum results, and to reduce the high interference levels between data and pilots (for the implicit pilots). The main differences between the different schemes are discussed and the performance results show that the use of the proposed techniques for channel estimation yield excellent results.info:eu-repo/semantics/acceptedVersio

    Simultaneous Wireless Information and Power Transfer in 5G communication

    Get PDF
    Green communication technology is expected to be widely adopted in future generation networks to improve energy efficiency and reliability of wireless communication network. Among the green communication technologies,simultaneous wireless information and power transfer (SWIPT) is adopted for its flexible energy harvesting technology through the radio frequency (RF) signa lthati sused for information transmission. Even though existing SWIPT techniques are flexible and adoptable for the wireless communication networks, the power and time resources of the signal need to be shared between infor- mation transmission and RF energy harvesting, and this compromises the quality of the signal. Therefore,SWIP Ttechniques need to be designed to allow an efficient resource allocation for communication and energy harvesting. The goal oft his thesisis to design SWIP Ttechniques that allow efficient,reliable and secure joint communications and power transference. A problem associated to SWIPT techniques combined with multi carrier signals is that the increased power requirements inherent to energy harvesting purposes can exacerbate nonlinear distortion effects at the transmitter. Therefore, we evaluate nonlinear distortion and present feasible solutions to mitigate the impact of nonlinear distortion effects on the performance.Another goal of the thesisis to take advantage of the energy harvesting signals in SWIP Ttechniques for channel estimation and security purposes.Theperformance of these SWIPT techniques is evaluated analytically, and those results are validated by simulations. It is shownthatthe proposed SWIPT schemes can have excellent performance, out performing conventional SWIPT schemes.Espera-se que aschamadas tecnologiasde green communications sejam amplamente ado- tadas em futuras redes de comunicação sem fios para melhorar a sua eficiência energética a fiabilidade.Entre estas,encontram-se as tecnologias SWIPT (Simultaneous Wireless Information and Power Transference), nas quais um sinal radio é usado para transferir simultaneamente potência e informações.Embora as técnicas SWIPT existentes sejam fle- xíveis e adequadas para as redes de comunicações sem fios, os recursos de energia e tempo do sinal precisam ser compartilhados entre a transmissão de informações e de energia, o que pode comprometer a qualidade do sinal. Deste modo,as técnicas SWIPT precisam ser projetadas para permitir uma alocação eficiente de recursos para comunicação e recolha de energia. O objetivo desta tese é desenvolver técnicas SWIPT que permitam transferência de energia e comunicações eficientes,fiáveis e seguras.Um problema associado às técnicas SWIPT combinadas com sinais multi-portadora são as dificuldades de amplificação ine- rentes à combinação de sinais de transmissão de energia com sinais de transferência de dados, que podem exacerbar os efeitos de distorção não-linear nos sinais transmitidos. Deste modo, um dos objectivos desta tese é avaliar o impacto da distorção não-linear em sinais SWIPT, e apresentar soluções viáveis para mitigar os efeitos da distorção não-linear no desempenho da transmissão de dados.Outro objetivo da tese é aproveitar as vantagens dos sinais de transferência de energia em técnicas SWIPT para efeitos de estimação de canal e segurança na comunicação.Os desempenhos dessas técnicas SWIPT são avaliados analiticamente,sendo os respectivos resultados validados por simulações.É mostrado que os esquemas SWIPT propostos podem ter excelente desempenho, superando esquemas SWIPT convencionais

    Channel estimation, data detection and carrier frequency offset estimation in OFDM systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) plays an important role in the implementation of high data rate communication. In this thesis, the problems of data detection and channel and carrier frequency offset estimation in OFDM systems are studied. Multi-symbol non-coherent data detection is studied which performs data detection by processing multiple symbols without the knowledge of the channel impulse response (CIR). For coherent data detection, the CIR needs to be estimated. Our objective in this thesis is to work on blind channel estimators which can extract the CIR using just one block of received OFDM data. A blind channel estimator for (Single Input Multi Output) SIMO OFDM systems is derived. The conditions under which the estimator is identifiable is studied and solutions to resolve the phase ambiguity of the proposed estimator are given.A channel estimator for superimposed OFDM systems is proposed and its CRB is derived. The idea of simultaneous transmission of pilot and data symbols on each subcarrier, the so called superimposed technique, introduces the efficient use of bandwidth in OFDM context. Pilot symbols can be added to data symbols to enable CIR estimation without sacrificing the data rate. Despite the many advantages of OFDM, it suffers from sensitivity to carrier frequency offset (CFO). CFO destroys the orthogonality between the subcarriers. Thus, it is necessary for the receiver to estimate and compensate for the frequency offset. Several high accuracy estimators are derived. These include CFO estimators, as well as a joint iterative channel/CFO estimator/data detector for superimposed OFDM. The objective is to achieve CFO estimation with using just one OFDM block of received data and without the knowledge of CIR

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Joint Decision-Directed Channel and Noise-Variance Estimation for MIMO OFDM/SDMA Systems Based on Expectation-Conditional Maximization

    No full text
    A joint channel impulse response (CIR) and noise-variance estimation scheme is proposed for multiuser multiple-input–multiple-output (MIMO) orthogonal frequency-division multiplexing/space-division multiple access (OFDM/SDMA) systems, which is based on the expectation-conditional maximization (ECM) algorithm. Multiple users communicating over fading channels exhibiting a range of different characteristics are considered in this paper. Channel estimation becomes quite challenging in this scenario since an increased number of independent transmitter–receiver links having different statistical characteristics have to be simultaneously estimated for each subcarrier. To cope with this scenario, we design an ECM-based joint CIR and noise-variance estimator for multiuser MIMO OFDM/SDMA systems, which is capable of simultaneously estimating diverse CIRs and noise variance. Furthermore, we propose a forward error code (FEC)-aided decision-directed channel estimation scheme based on the ECM algorithm, which further improves the ECM algorithm by exploiting the error correction capability of an FEC decoder for iteratively exchanging information between the decoder and the ECM algorithm

    Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels

    Get PDF
    Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user- and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of front–end resampling that corrects for common Doppler scalingmay not be appropriatein such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user- and/or path-specific intercarrier interference. To counteract this problem, we propose a family of front–end receiver structures thatutilizemultiple-resampling (MR)branches,eachmatched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradient–descent approachis also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Martha’s Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment
    corecore