937 research outputs found

    A Survey on Evaluation Metrics for Backchannel Prediction Models

    Get PDF
    In this paper we give an overview of the evaluation metrics used to measure the performance of backchannel prediction models. Both objective and subjective evaluation metrics are discussed. The survey shows that almost every backchannel prediction model is evaluated with a different evaluation metric. This makes comparison between developed models unreliable, even beside the other variables in play, such as different corpora, language, conversational setting, amount of data and/or definition of the term backchannel

    Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive Bias

    Full text link
    Scaling text-to-speech to a large and wild dataset has been proven to be highly effective in achieving timbre and speech style generalization, particularly in zero-shot TTS. However, previous works usually encode speech into latent using audio codec and use autoregressive language models or diffusion models to generate it, which ignores the intrinsic nature of speech and may lead to inferior or uncontrollable results. We argue that speech can be decomposed into several attributes (e.g., content, timbre, prosody, and phase) and each of them should be modeled using a module with appropriate inductive biases. From this perspective, we carefully design a novel and large zero-shot TTS system called Mega-TTS, which is trained with large-scale wild data and models different attributes in different ways: 1) Instead of using latent encoded by audio codec as the intermediate feature, we still choose spectrogram as it separates the phase and other attributes very well. Phase can be appropriately constructed by the GAN-based vocoder and does not need to be modeled by the language model. 2) We model the timbre using global vectors since timbre is a global attribute that changes slowly over time. 3) We further use a VQGAN-based acoustic model to generate the spectrogram and a latent code language model to fit the distribution of prosody, since prosody changes quickly over time in a sentence, and language models can capture both local and long-range dependencies. We scale Mega-TTS to multi-domain datasets with 20K hours of speech and evaluate its performance on unseen speakers. Experimental results demonstrate that Mega-TTS surpasses state-of-the-art TTS systems on zero-shot TTS, speech editing, and cross-lingual TTS tasks, with superior naturalness, robustness, and speaker similarity due to the proper inductive bias of each module. Audio samples are available at https://mega-tts.github.io/demo-page

    A Study of Modeling Rising Intonation in Cantonese Neural Speech Synthesis

    Full text link
    In human speech, the attitude of a speaker cannot be fully expressed only by the textual content. It has to come along with the intonation. Declarative questions are commonly used in daily Cantonese conversations, and they are usually uttered with rising intonation. Vanilla neural text-to-speech (TTS) systems are not capable of synthesizing rising intonation for these sentences due to the loss of semantic information. Though it has become more common to complement the systems with extra language models, their performance in modeling rising intonation is not well studied. In this paper, we propose to complement the Cantonese TTS model with a BERT-based statement/question classifier. We design different training strategies and compare their performance. We conduct our experiments on a Cantonese corpus named CanTTS. Empirical results show that the separate training approach obtains the best generalization performance and feasibility.Comment: Accepted by INTERSPEECH 202
    corecore