9 research outputs found

    26. Theorietag Automaten und Formale Sprachen 23. Jahrestagung Logik in der Informatik: Tagungsband

    Get PDF
    Der Theorietag ist die Jahrestagung der Fachgruppe Automaten und Formale Sprachen der Gesellschaft für Informatik und fand erstmals 1991 in Magdeburg statt. Seit dem Jahr 1996 wird der Theorietag von einem eintägigen Workshop mit eingeladenen Vorträgen begleitet. Die Jahrestagung der Fachgruppe Logik in der Informatik der Gesellschaft für Informatik fand erstmals 1993 in Leipzig statt. Im Laufe beider Jahrestagungen finden auch die jährliche Fachgruppensitzungen statt. In diesem Jahr wird der Theorietag der Fachgruppe Automaten und Formale Sprachen erstmalig zusammen mit der Jahrestagung der Fachgruppe Logik in der Informatik abgehalten. Organisiert wurde die gemeinsame Veranstaltung von der Arbeitsgruppe Zuverlässige Systeme des Instituts für Informatik an der Christian-Albrechts-Universität Kiel vom 4. bis 7. Oktober im Tagungshotel Tannenfelde bei Neumünster. Während des Tre↵ens wird ein Workshop für alle Interessierten statt finden. In Tannenfelde werden • Christoph Löding (Aachen) • Tomás Masopust (Dresden) • Henning Schnoor (Kiel) • Nicole Schweikardt (Berlin) • Georg Zetzsche (Paris) eingeladene Vorträge zu ihrer aktuellen Arbeit halten. Darüber hinaus werden 26 Vorträge von Teilnehmern und Teilnehmerinnen gehalten, 17 auf dem Theorietag Automaten und formale Sprachen und neun auf der Jahrestagung Logik in der Informatik. Der vorliegende Band enthält Kurzfassungen aller Beiträge. Wir danken der Gesellschaft für Informatik, der Christian-Albrechts-Universität zu Kiel und dem Tagungshotel Tannenfelde für die Unterstützung dieses Theorietags. Ein besonderer Dank geht an das Organisationsteam: Maike Bradler, Philipp Sieweck, Joel Day. Kiel, Oktober 2016 Florin Manea, Dirk Nowotka und Thomas Wilk

    Proceedings of AUTOMATA 2010: 16th International workshop on cellular automata and discrete complex systems

    Get PDF
    International audienceThese local proceedings hold the papers of two catgeories: (a) Short, non-reviewed papers (b) Full paper

    On the k-Abelian Equivalence Relation of Finite Words

    Get PDF
    This thesis is devoted to the so-called k-abelian equivalence relation of sequences of symbols, that is, words. This equivalence relation is a generalization of the abelian equivalence of words. Two words are abelian equivalent if one is a permutation of the other. For any positive integer k, two words are called k-abelian equivalent if each word of length at most k occurs equally many times as a factor in the two words. The k-abelian equivalence defines an equivalence relation, even a congruence, of finite words. A hierarchy of equivalence classes in between the equality relation and the abelian equivalence of words is thus obtained. Most of the literature on the k-abelian equivalence deals with infinite words. In this thesis we consider several aspects of the equivalence relations, the main objective being to build a fairly comprehensive picture on the structure of the k-abelian equivalence classes themselves. The main part of the thesis deals with the structural aspects of k-abelian equivalence classes. We also consider aspects of k-abelian equivalence in infinite words. We survey known characterizations of the k-abelian equivalence of finite words from the literature and also introduce novel characterizations. For the analysis of structural properties of the equivalence relation, the main tool is the characterization by the rewriting rule called the k-switching. Using this rule it is straightforward to show that the language comprised of the lexicographically least elements of the k-abelian equivalence classes is regular. Further word-combinatorial analysis of the lexicographically least elements leads us to describe the deterministic finite automata recognizing this language. Using tools from formal language theory combined with our analysis, we give an optimal expression for the asymptotic growth rate of the number of k-abelian equivalence classes of length n over an m-letter alphabet. Explicit formulae are computed for small values of k and m, and these sequences appear in Sloane’s Online Encyclopedia of Integer Sequences. Due to the fact that the k-abelian equivalence relation is a congruence of the free monoid, we study equations over the k-abelian equivalence classes. The main result in this setting is that any system of equations of k-abelian equivalence classes is equivalent to one of its finite subsystems, i.e., the monoid defined by the k-abelian equivalence relation possesses the compactness property. Concerning infinite words, we mainly consider the (k-)abelian complexity function. We complete a classification of the asymptotic abelian complexities of pure morphic binary words. In other words, given a morphism which has an infinite binary fixed point, the limit superior asymptotic abelian complexity of the fixed point can be computed (in principle). We also give a new proof of the fact that the k-abelian complexity of a Sturmian word is n + 1 for length n 2k. In fact, we consider several aspects of the k-abelian equivalence relation in Sturmian words using a dynamical interpretation of these words. We reprove the fact that any Sturmian word contains arbitrarily large k-abelian repetitions. The methods used allow to analyze the situation in more detail, and this leads us to define the so-called k-abelian critical exponent which measures the ratio of the exponent and the length of the root of a k-abelian repetition. This notion is connected to a deep number theoretic object called the Lagrange spectrum

    Multimodal dynamics : self-supervised learning in perceptual and motor systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 178-192).This thesis presents a self-supervised framework for perceptual and motor learning based upon correlations in different sensory modalities. The brain and cognitive sciences have gathered an enormous body of neurological and phenomenological evidence in the past half century demonstrating the extraordinary degree of interaction between sensory modalities during the course of ordinary perception. We develop a framework for creating artificial perceptual systems that draws on these findings, where the primary architectural motif is the cross-modal transmission of perceptual information to enhance each sensory channel individually. We present self-supervised algorithms for learning perceptual grounding, intersensory influence, and sensorymotor coordination, which derive training signals from internal cross-modal correlations rather than from external supervision. Our goal is to create systems that develop by interacting with the world around them, inspired by development in animals. We demonstrate this framework with: (1) a system that learns the number and structure of vowels in American English by simultaneously watching and listening to someone speak. The system then cross-modally clusters the correlated auditory and visual data.(cont.) It has no advance linguistic knowledge and receives no information outside of its sensory channels. This work is the first unsupervised acquisition of phonetic structure of which we are aware, outside of that done by human infants. (2) a system that learns to sing like a zebra finch, following the developmental stages of a juvenile zebra finch. It first learns the song of an adult male and then listens to its own initially nascent attempts at mimicry through an articulatory synthesizer. In acquiring the birdsong to which it was initially exposed, this system demonstrates self-supervised sensorimotor learning. It also demonstrates afferent and efferent equivalence - the system learns motor maps with the same computational framework used for learning sensory maps.by Michael Harlan Coen.Ph.D

    K + K = 120 : Papers dedicated to László Kálmán and András Kornai on the occasion of their 60th birthdays

    Get PDF

    Social Ecography : International trade, network analysis, and an Emmanuelian conceptualization of ecological unequal exchange

    Get PDF
    This thesis demonstrates how network analysis, ecological economics and the world-system perspective can be combined into an ecographic framework that can yield new insights into the underlying structure of the world-economy as well as its surrounding world-ecology. In particular, the thesis focuses on the structural theory of ecological unequal exchange, a theory suggesting a relationship between positionality within the world-system and unequal exchange of biophysical resources. Using formal tools from social network analysis, the theory is tested on empirical trade data for two commodity types – primary agricultural goods and fuel commodities – for the period 1995-1999. As the selected commodities can be seen as adequate representations of the third Ricardian production factor, i.e. natural resources, ecological unequal exchange as conceptualized in this thesis is more in line with the original Emmanuelian factor-cost theory than previous approaches. Here, similar to Emmanuel’s formulation, it is a theory about factor cost differentials. Whereas the theory mostly holds true in the case of fuel commodities, the analysis of primary agricultural commodities actually points to an inverse relationship between structural positionality and ecological unequal exchange. This could point to a fundamental difference between these two types of commodities, for instance as reflected in an observed ecological Leontief paradox, which underlines the need for more detailed, and less typological, treatments of ecological unequal exchange
    corecore