4,436 research outputs found

    Multi-scalar remote sensing of the northern mixed prairie vegetation

    Get PDF
    Optimal scale of study and scaling are fundamental to ecological research, and have been made easier with remotely sensed (RS) data. With access to RS data at multiple scales, it is important to identify how they compare and how effectively information at a specific scale will potentially transfer between scales. Therefore, my research compared the spatial, spectral, and temporal aspects of scale of RS data to study biophysical properties and spatio-temporal dynamics of the northern mixed prairie vegetation. I collected ground cover, dominant species, aboveground biomass, and leaf area index (LAI) from 41 sites and along 3 transects in the West Block of Grasslands National Park of Canada (GNPC; +49°, -107°) between June-July of 2006 and 2007. Narrowband (VIn) and broadband vegetation indices (VIb) were derived from RS data at multiple scales acquired through field spectroradiometry (1 m) and satellite imagery (10, 20, 30 m). VIs were upscaled from their native scales to coarser scales for spatial comparison, and time-series imagery at ~5-year intervals was used for temporal comparison. Results showed VIn, VIb, and LAI captured the spatial variation of plant biophysical properties along topographical gradients and their spatial scales ranged from 35-200 m. Among the scales compared, RS data at finer scales showed stronger ability than coarser scales to estimate ground vegetation. VIn were found to be better predictors than VIb in estimating LAI. Upscaling at all spatial scales showed similar weakening trends for LAI prediction using VIb, however spatial regression methods were necessary to minimize spatial effects in the RS data sets and to improve the prediction results. Multiple endmember spectral mixture analysis (MESMA) successfully captured the spatial heterogeneity of vegetation and effective modeling of sub-pixel spectral variability to produce improved vegetation maps. However, the efficiency of spectral unmixing was found to be highly dependent on the identification of optimal type and number of region-specific endmembers, and comparison of spectral unmixing on imagery at different scales showed spectral resolution to be important over spatial resolution. With the development of a comprehensive endmember library, MESMA may be used as a standard tool for identifying spatio-temporal changes in time-series imagery. Climatic variables were found to affect the success of unmixing, with lower success for years of climatic extremes. Change-detection analysis showed the success of biodiversity conservation practices of GNPC since establishment of the park and suggests that its management strategies are effective in maintaining vegetation heterogeneity in the region. Overall, my research has advanced the understanding of RS of the northern mixed prairie vegetation, especially in the context of effects of scale and scaling. From an eco-management perspective, this research has provided cost- and time-effective methods for vegetation mapping and monitoring. Data and techniques tested in this study will be even more useful with hyperspectral imagery should they become available for the northern mixed prairie

    Evapotranspiration estimation using Landsat-8 data with a two-layer framework

    Get PDF
    This work was partially supported by the National Natural Science Foundation of China (41401042), National Key Basic Research Program of China (973 Program) (Grant No. 2015CB452701) and National Natural Science Foundation of China (Grant Nos. 41571019 and 41371043).Peer reviewedproo

    An Operational Remote Sensing Algorithm of Land Surface Evaporation

    Get PDF
    Partitioning of solar energy at the Earth surface has significant implications in climate dynamics, hydrology, and ecology. Consequently, spatial mapping of energy partitioning from satellite remote sensing data has been an active research area for over two decades. We developed an algorithm for estimating evaporation fraction (EF), expressed as a ratio of actual evapotranspiration (ET) to the available energy (sum of ET and sensible heat flux), from satellite data. The algorithm is a simple two-source model of ET. We characterize a landscape as a mixture of bare soil and vegetation and thus we estimate EF as a mixture of EF of bare soil and EF of vegetation. In the estimation of EF of vegetation, we use the complementary relationship of the actual and the potential ET for the formulation of EF. In that, we use the canopy conductance model for describing vegetation physiology. On the other hand, we use “VI-Ts” (vegetation index-surface temperature) diagram for estimation of EF of bare soil. As operational production of EF globally is our goal, the algorithm is primarily driven by remote sensing data but flexible enough to ingest ancillary data when available. We validated EF from this prototype algorithm using NOAA/AVHRR data with actual observations of EF at AmeriFlux stations (standard error ≅ 0.17 and R2 ≅ 0.71). Global distribution of EF every 8 days will be operationally produced by this algorithm using the data of MODIS on EOS-PM (Aqua) satellite

    Spectral Mixture Analysis as a Unified Framework for the Remote Sensing of Evapotranspiration

    Get PDF
    This study illustrates a unified, physically-based framework for mapping landscape parameters of evapotranspiration (ET) using spectral mixture analysis (SMA). The framework integrates two widely used approaches by relating radiometric surface temperature to subpixel fractions of substrate (S), vegetation (V), and dark (D) spectral endmembers (EMs). Spatial and temporal variations in these spectral endmember fractions reflect process-driven variations in soil moisture, vegetation phenology, and illumination. Using all available Landsat 8 scenes from the peak growing season in the agriculturally diverse Sacramento Valley of northern California, we characterize the spatiotemporal relationships between each of the S, V, D land cover fractions and apparent brightness temperature (T) using bivariate distributions in the ET parameter spaces. The dark fraction scales inversely with shortwave broadband albedo (ρ < −0.98), and show a multilinear relationship to T. Substrate fraction estimates show a consistent (ρ ≈ 0.7 to 0.9) linear relationship to T. The vegetation fraction showed the expected triangular relationship to T. However, the bivariate distribution of V and T shows more distinct clustering than the distributions of Normalized Difference Vegetation Index (NDVI)-based proxies and T. Following the Triangle Method, the V fraction is used with T to compute the spatial maps of the ET fraction (EF; the ratio of the actual total ET to the net radiation) and moisture availability (Mo; the ratio of the actual soil surface evaporation to potential ET at the soil surface). EF and Mo estimates derived from the V fraction distinguish among rice growth stages, and between rice and non-rice agriculture, more clearly than those derived from transformed NDVI proxies. Met station-based reference ET & soil temperatures also track vegetation fraction-based estimates of EF & Mo more closely than do NDVI-based estimates of EF & Mo. The proposed approach using S, V, D land cover fractions in conjunction with T (SVD+T) provides a physically-based conceptual framework that unifies two widely-used approaches by simultaneously mapping the effects of albedo and vegetation abundance on the surface temperature field. The additional information provided by the third (Substrate) fraction suggests a potential avenue for ET model improvement by providing an explicit observational constraint on the exposed soil fraction and its moisture-modulated brightness. The structures of the T, EF & Mo vs SVD feature spaces are complementary and that can be interpreted in the context of physical variables that scale linearly and that can be represented directly in process models. Using the structure of the feature spaces to represent the spatiotemporal trajectory of crop phenology is possible in agricultural settings, because variations in the timing of planting and irrigation result in continuous trajectories in the physical parameter spaces that are represented by the feature spaces. The linear scaling properties of the SMA fraction estimates from meter to kilometer scales also facilitate the vicarious validation of ET estimates using multiple resolutions of imagery

    Modelling, Monitoring and Validation of Plant Phenology Products

    Get PDF
    Phänologie, die Lehre der periodisch wiederkehrenden Entwicklungserscheinungen in der Natur, hat sich in den letzten Jahrzehnten zu einem wichtigen Teilgebiet der Klimaforschung entwickelt. Einer der Haupteffekte der globalen Erwärmung ist die Veränderung der Wachstumsmuster und Fortpflanzungsgewohnheiten von Pflanzen, und somit veränderte Phänologie. Um die Auswirkungen der Klimaveränderung auf wildwachsende sowie Kulturpflanzen vorherzusagen, werden phänologische Modelle angewendet, verbessert und validiert. Dabei ist Wissen über den aktuellen Stand der Vegetation notwendig, welches aus Beobachtungen und fernerkundliche Messungen gewonnen wird. Die hier präsentierte Arbeit befasst sich mit dem Verständnis der Zusammenhänge zwischen fernerkundlichen Messungen und phänologischen Stadien und somit den Herausforderungen der modernen phänologischen Forschung: Der Vorhersage der Phänologie durch Modellierungsansätze, der Beobachtung der Phänologie mit optischen boden- und satellitengestützten Sensoren und der Validierung phänologischer Produkte.Phenology, the study of recurring life cycle events of plants and animals has emerged as an important part of climate change research within the last decades. One of the main effects of global warming on vegetation is altered phenology, since plants have to modify their growth patterns and reproduction habits as reaction to changing environmental conditions. Forecasting phenology, thus phenological modelling, is a timely challenge given the necessity to predict the impact of global warming on wild-growing species and agricultural crops. However, assessing the present state of vegetation, thus phenological monitoring, is essential to update and validate model results. An improved comprehension of the relationships between plant phenology and remotely sensed products is crucial to interpret these results. Consequently, the presented thesis deals with the main challenges faced in modern phenology research, covering phenological forecasting with a modelling approach, satellite-based phenology extraction, and near-surface long-term monitoring of phenology

    Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements

    Get PDF
    Over the past decade, the role of multiangle remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75 off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertain ties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    Satellite Microwave Remote Sensing of Boreal-Arctic Land Surface State and Meteorology from AMSR-E

    Get PDF
    High latitude regions are undergoing significant climate-related change and represent an integral component of the Earth’s climate system. Near-surface vapor pressure deficit, soil temperature, and soil moisture are essential state variables for monitoring high latitude climate and estimating the response of terrestrial ecosystems to climate change. Methods are developed and evaluated to retrieve surface soil temperature, daily maximum/minimum air temperature, and land surface wetness information from the EOS Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite for eight Boreal forest and Arctic tundra biophysical monitoring sites across Alaska and northern Canada. Daily vapor pressure deficit is determined by employing AMSR-E daily maximum/minimum air temperature retrievals. The seasonal pattern of microwave emission and relative accuracy of the estimated land surface state are influenced strongly by landscape properties including the presence of open water, vegetation type and seasonal phenology, snow cover and freeze-thaw transitions. Daily maximum/minimum air temperature is retrieved with RMSEs of 2.88 K and 2.31 K, respectively. Soil temperature is retrieved with RMSE of 3.1 K. Vapor pressure deficit (VPD) is retrieved to within 427.9 Pa using thermal information from AMSR-E. AMSR-E thermal information imparted 27% of the overall error in VPD estimation with the remaining error attributable to underlying algorithm assumptions. Land surface wetness information derived from AMSR-E corresponded with soil moisture observations and simple soil moisture models at locations with tundra, grassland, and mixed -forest/cropland land covers (r = 0.49 to r = 0.76). AMSR-E 6.9 GHz land surface wetness showed little correspondence to soil moisture observation or model estimates at locations with \u3e 20% open water and \u3e 5 m2 m-2 Leaf Area Index, despite efforts to remove the impact of open water and vegetation biomass. Additional information on open water fraction and vegetation phenology derived from AMSR-E 6.9 GHz corresponds well with independent satellite observations from MODIS, Sea-Winds, and JERS-1. The techniques and interpretations of high-latitude terrestrial brightness temperature signatures presented in this investigation will likely prove useful for future passive microwave missions and ecosystem modeling
    corecore