3,859 research outputs found

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development

    Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data

    Get PDF
    Ensemble classification is a well-established approach that involves fusing the decisions of multiple predictive models. A similar “ensemble logic” has been recently applied to challenging feature selection tasks aimed at identifying the most informative variables (or features) for a given domain of interest. In this work, we discuss the rationale of ensemble feature selection and evaluate the effects and the implications of a specific ensemble approach, namely the data perturbation strategy. Basically, it consists in combining multiple selectors that exploit the same core algorithm but are trained on different perturbed versions of the original data. The real potential of this approach, still object of debate in the feature selection literature, is here investigated in conjunction with different kinds of core selection algorithms (both univariate and multivariate). In particular, we evaluate the extent to which the ensemble implementation improves the overall performance of the selection process, in terms of predictive accuracy and stability (i.e., robustness with respect to changes in the training data). Furthermore, we measure the impact of the ensemble approach on the final selection outcome, i.e. on the composition of the selected feature subsets. The results obtained on ten public genomic benchmarks provide useful insight on both the benefits and the limitations of such ensemble approach, paving the way to the exploration of new and wider ensemble schemes

    Gene set based ensemble methods for cancer classification

    Get PDF
    Diagnosis of cancer very often depends on conclusions drawn after both clinical and microscopic examinations of tissues to study the manifestation of the disease in order to place tumors in known categories. One factor which determines the categorization of cancer is the tissue from which the tumor originates. Information gathered from clinical exams may be partial or not completely predictive of a specific category of cancer. Further complicating the problem of categorizing various tumors is that the histological classification of the cancer tissue and description of its course of development may be atypical. Gene expression data gleaned from micro-array analysis provides tremendous promise for more accurate cancer diagnosis. One hurdle in the classification of tumors based on gene expression data is that the data space is ultra-dimensional with relatively few points; that is, there are a small number of examples with a large number of genes. A second hurdle is expression bias caused by the correlation of genes. Analysis of subsets of genes, known as gene set analysis, provides a mechanism by which groups of differentially expressed genes can be identified. We propose an ensemble of classifiers whose base classifiers are â„“1-regularized logistic regression models with restriction of the feature space to biologically relevant genes. Some researchers have already explored the use of ensemble classifiers to classify cancer but the effect of the underlying base classifiers in conjunction with biologically-derived gene sets on cancer classification has not been explored

    Heuristic ensembles of filters for accurate and reliable feature selection

    Get PDF
    Feature selection has become increasingly important in data mining in recent years. However, the accuracy and stability of feature selection methods vary considerably when used individually, and yet no rule exists to indicate which one should be used for a particular dataset. Thus, an ensemble method that combines the outputs of several individual feature selection methods appears to be a promising approach to address the issue and hence is investigated in this research. This research aims to develop an effective ensemble that can improve the accuracy and stability of the feature selection. We proposed a novel heuristic ensemble of filters (HEF). It combines two types of filters: subset filters and ranking filters with a heuristic consensus algorithm in order to utilise the strength of each type. The ensemble is tested on ten benchmark datasets and its performance is evaluated by two stability measures and three classifiers. The experimental results demonstrate that HEF improves the stability and accuracy of the selected features and in most cases outperforms the other ensemble algorithms, individual filters and the full feature set. The research on the HEF algorithm is extended in several dimensions; including more filter members, three novel schemes of mean rank aggregation with partial lists, and three novel schemes for a weighted heuristic ensemble of filters. However, the experimental results demonstrate that adding weight to filters in HEF does not achieve the expected improvement in accuracy, but increases time and space complexity, and clearly decreases stability. Therefore, the core ensemble algorithm (HEF) is demonstrated to be not just simpler but also more reliable and consistent than the later more complicated and weighted ensembles. In addition, we investigated how to use data in feature selection, using ALL or PART of it. Systematic experiments with thirty five synthetic and benchmark real-world datasets were carried out

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Enrichment and aggregation of topological motifs are independent organizational principles of integrated interaction networks

    Full text link
    Topological network motifs represent functional relationships within and between regulatory and protein-protein interaction networks. Enriched motifs often aggregate into self-contained units forming functional modules. Theoretical models for network evolution by duplication-divergence mechanisms and for network topology by hierarchical scale-free networks have suggested a one-to-one relation between network motif enrichment and aggregation, but this relation has never been tested quantitatively in real biological interaction networks. Here we introduce a novel method for assessing the statistical significance of network motif aggregation and for identifying clusters of overlapping network motifs. Using an integrated network of transcriptional, posttranslational and protein-protein interactions in yeast we show that network motif aggregation reflects a local modularity property which is independent of network motif enrichment. In particular our method identified novel functional network themes for a set of motifs which are not enriched yet aggregate significantly and challenges the conventional view that network motif enrichment is the most basic organizational principle of complex networks.Comment: 12 pages, 5 figure

    An adaptive ensemble learner function via bagging and rank aggregation with applications to high dimensional data.

    Get PDF
    An ensemble consists of a set of individual predictors whose predictions are combined. Generally, different classification and regression models tend to work well for different types of data and also, it is usually not know which algorithm will be optimal in any given application. In this thesis an ensemble regression function is presented which is adapted from Datta et al. 2010. The ensemble function is constructed by combining bagging and rank aggregation that is capable of changing its performance depending on the type of data that is being used. In the classification approach, the results can be optimized with respect to performance measures such as accuracy, sensitivity, specificity and area under the curve (AUC) whereas in the regression approach, it can be optimized with respect to measures such as mean square error and mean absolute error. The ensemble classifier and ensemble regressor performs at the level of the best individual classifier or regression model. For complex high-dimensional datasets, it may be advisable to combine a number of classification algorithms or regression algorithms rather than using one specific algorithm
    • …
    corecore