8,328 research outputs found

    Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models

    Get PDF
    In the field of renewable energy, reliability analysis techniques combining the operating time of the system with the observation of operational and environmental conditions, are gaining importance over time. In this paper, reliability models are adapted to incorporate monitoring data on operating assets, as well as information on their environmental conditions, in their calculations. To that end, a logical decision tool based on two artificial neural networks models is presented. This tool allows updating assets reliability analysis according to changes in operational and/or environmental conditions. The proposed tool could easily be automated within a supervisory control and data acquisition system, where reference values and corresponding warnings and alarms could be now dynamically generated using the tool. Thanks to this capability, on-line diagnosis and/or potential asset degradation prediction can be certainly improved. Reliability models in the tool presented are developed according to the available amount of failure data and are used for early detection of degradation in energy production due to power inverter and solar trackers functional failures. Another capability of the tool presented in the paper is to assess the economic risk associated with the system under existing conditions and for a certain period of time. This information can then also be used to trigger preventive maintenance activities

    Dynamic artificial neural network-based reliability considering operational context of assets

    Get PDF
    Postprint. 24 meses de embargo (Elsevier)Assets reliability is a key issue to consider in the maintenance management policy and given its importance several estimation methods and models have been proposed within the reliability engineering discipline. However, these models involve certain assumptions which are the source of different uncertainties inherent to the estimations. An important source of uncertainty is the operational context in which the assets operate and how it affects the different failures. Therefore, this paper contributes to the reduction of the uncertainty coming from the operational context with the proposal of a novel method and its validation through a case study. The proposed model specifically addresses changes in the operational context by implementing dynamic capabilities in a new conception of the Proportional Hazards Model. It also allows to model interactions among working environment variables as well as hidden phenomena thanks to the integration within the model of artificial neural network method

    Probabilistic methods for seasonal forecasting in a changing climate: Cox-type regression models

    Get PDF
    For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept to other positive variables of interest beyond the time domain. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Niño/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictor

    Reliability analysis for automobile engines: conditional inference trees

    Get PDF
    The reliability model with covariates for machinery parts has been extensively studied by the proportional hazards model (PHM) and its variants. However, it is not straightforward to provide business recommendations based on the results of the PHM. We use a novel method, namely the Conditional Inference Tree, to conduct the reliability analysis for the automobile engines data, provided by a UK fleet company. We find that the reliability of automobile engines is significantly related to the vehicle age, early failure, and repair history. Our tree-structured model can be easily interpreted, and tangible business recommendations are provided for the fleet management and maintenance

    On the Reliability of Machine Learning Models for Survival Analysis When Cure Is a Possibility

    Get PDF
    [Abstract]: In classical survival analysis, it is assumed that all the individuals will experience the event of interest. However, if there is a proportion of subjects who will never experience the event, then a standard survival approach is not appropriate, and cure models should be considered instead. This paper deals with the problem of adapting a machine learning approach for classical survival analysis to a situation when cure (i.e., not suffering the event) is a possibility. Specifically, a brief review of cure models and recent machine learning methodologies is presented, and an adaptation of machine learning approaches to account for cured individuals is introduced. In order to validate the proposed methods, we present an extensive simulation study in which we compare the performance of the adapted machine learning algorithms with existing cure models. The results show the good behavior of the semiparametric or the nonparametric approaches, depending on the simulated scenario. The practical utility of the methodology is showcased through two real-world dataset illustrations. In the first one, the results show the gain of using the nonparametric mixture cure model approach. In the second example, the results show the poor performance of some machine learning methods for small sample sizes.This project was funded by the Xunta de Galicia (Axencia Galega de Innovación) Research projects COVID-19 presented in ISCIII IN845D 2020/26, Operational Program FEDER Galicia 2014–2020; by the Centro de Investigación de Galicia “CITIC”, funded by Xunta de Galicia and the European Union European Regional Development Fund (ERDF)-Galicia 2014–2020 Program, by grant ED431G 2019/01; and by the Spanish Ministerio de Economía y Competitividad (research projects PID2019-109238GB-C22 and PID2021-128045OA-I00). ALC was sponsored by the BEATRIZ GALINDO JUNIOR Spanish Grant from MICINN (Ministerio de Ciencia e Innovación) with code BGP18/00154. ALC was partially supported by the MICINN Grant PID2020-113578RB-I00 and partial support of Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2020-14). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.Xunta de Galicia; ED431G 2019/01Xunta de Galicia; ED431C-2020-14Xunta de Galicia; IN845D 2020/2
    corecore