827 research outputs found

    Dynamic Optimization Algorithms for Baseload Power Plant Cycling under Variable Renewable Energy

    Get PDF
    The growing deployment of variable renewable energy (VRE) sources, such as wind and solar, is mainly due to the decline in the cost of renewable technologies and the increase of societal and cultural pressures. Solar and wind power generation are also known to have zero marginal costs and fuel emissions during dispatch. Thereby, the VRE from these sources should be prioritized when available. However, the rapid deployment of VRE has heightened concerns regarding the challenges in the integration between fossil-fueled and renewable energy systems. The high variability introduced by the VRE as well as the limited alignment between demand and wind/solar power generation led to the increased need of dispatchable energy sources such as baseload natural gas- and coal-fired power plants to cycle their power outputs more often to reliably supply the net load. The increasing power plant cycling can introduce unexpected inefficiencies into the system that potentially incur higher costs, emissions, and wear-and-tear, as the power plants are no longer operating at their optimal design points. In this dissertation, dynamic optimization algorithms are developed and implemented for baseload power plant cycling under VRE penetration. Specifically, two different dynamic optimization strategies are developed for the minute and hourly time scales of grid operation. The minute-level strategy is based on a mixed-integer linear programming (MILP) formulation for dynamic dispatch of energy systems, such as natural gas- and coal-fired power plants and sodium sulfur batteries, under VRE while considering power plant equipment health-related constraints. The hourly-level strategy is based on a Nonlinear Multi-objective dynamic real-time Predictive Optimization (NMPO) implemented in a supercritical pulverized coal-fired (SCPC) power plant with a postcombustion carbon capture system (CCS), considering economic and environmental objectives. Different strategies are employed and explored to improve computational tractability, such as mathematical reformulations, automatic differentiation (AD), and parallelization of a metaheuristic particle swarm optimization (PSO) component. The MILP-based dynamic dispatch framework is used to simulate case studies considering different loads and renewable penetration levels for a suite of energy systems. The results show that grid flexibility is mostly provided by the natural gas power plant, while the batteries are used sparingly. Additionally, considering the post-optimization equivalent carbon analysis, the environmental performance is intrinsically connected to grid flexibility and the level of VRE penetration. The stress results reinforce the necessity of further considering and including equipment health-related constraints during dispatch. The results of the NMPO successfully implemented for a large-scale SCPC-CCS show that the optimal compromise is automatically chosen from the Pareto front according to a set of weights for the objectives with minimal interaction between the framework and the decision maker. They also indicate that to setup the optimization thresholds and constraints, knowledge of the power system operations is essential. Finally, the market and carbon policies have an impact on the optimal compromise between the economic and environmental objectives

    An integrated simulation tool proposed for modeling and optimization of CHP units

    Get PDF
    Master's thesis in Petroleum engineeringIn this project, a novel framework for CHP optimization is proposed. The objective of the study was to develop an automatic optimization tool based on the integration of IPSEpro simulation software and MATLAB programming environment. The data exchange between these components was organized via COM interface. An experimentally validated model of the commercial AET100 CHP unit was utilized. The CHP was considered as a part of a grid. Therefore electricity trading possibility was taken into account. The system was extended to polygeneration by implementing a solar panel as an additional power source. The objective was to minimize the cost function, which consists of operational and capital investments costs, under a set of constraints. For solving the problem, the Genetic Algorithm was applied. As an addition to the study, two other algorithms (Particle Swarm Optimization and Differential Evolution) were also tested. The applying a tool to real data was not considered in the project. However, an optimization was done for test data to show the performance of a developed framework. The test optimization was done for the 24-hours period in July and December, with different electricity and gas price profiles and various ambient conditions. The obtained results were analyzed in details. It was shown that the proposed optimization tool provides appropriate results. It is flexible and has a good potential to be further extended and developed

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya

    Get PDF
    Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya’s northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector

    Exergy analysis and thermo-economic optimization of a district heating network with solar- photovoltaic and heat pumps

    Get PDF
    International audienceElectrification of district heating networks, especially using heat pumps, is widely recommended in literature. Installing heat pumps affects both electricity and heating networks. Due to lack of suitable modelling tools, size optimization of heat pumps in the heating network with the full consideration of the electric distribution network is not well addressed in literature. This paper presents an optimization of a district heating network consisting of solar photovoltaic and heat pumps with the consideration of the detail parameters of heating and electric distribution networks. An extended energy hub approach is used to model the energy system. Exergy and energy analyses are applied to identify and isolate lossy branches in a meshed heating network. Both methods resulted into the same reduced topology. Particle swarm optimization is then applied on the reduced topology in order to find out the most economical temperature profiles and size of distributed heat pumps. The thermo-economic results are found to be highly influenced by the heat demand distribution, the power loss in both electric and heat distribution network, the cost of generation, the temperature limits and the coupling effect of the heat pumps

    Review on the cost optimization of microgrids via particle swarm optimization

    Get PDF
    Economic analysis is an important tool in evaluating the performances of microgrid (MG) operations and sizing. Optimization techniques are required for operating and sizing an MG as economically as possible. Various optimization approaches are applied to MGs, which include classic and artificial intelligence techniques. Particle swarm optimization (PSO) is one of the most frequently used methods for cost optimization due to its high performance and flexibility. PSO has various versions and can be combined with other intelligent methods to realize improved performance optimization. This paper reviews the cost minimization performances of various economic models that are based on PSO with regard to MG operations and sizing. First, PSO is described, and its performance is analyzed. Second, various objective functions, constraints and cost functions that are used in MG optimizations are presented. Then, various applications of PSO for MG sizing and operations are reviewed. Additionally, optimal operation costs that are related to the energy management strategy, unit commitment, economic dispatch and optimal power flow are investigated. © 2019, The Author(s)

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems
    corecore