103 research outputs found

    Comparison of ontology alignment systems across single matching task via the McNemar's test

    Full text link
    Ontology alignment is widely-used to find the correspondences between different ontologies in diverse fields.After discovering the alignments,several performance scores are available to evaluate them.The scores typically require the identified alignment and a reference containing the underlying actual correspondences of the given ontologies.The current trend in the alignment evaluation is to put forward a new score(e.g., precision, weighted precision, etc.)and to compare various alignments by juxtaposing the obtained scores. However,it is substantially provocative to select one measure among others for comparison.On top of that, claiming if one system has a better performance than one another cannot be substantiated solely by comparing two scalars.In this paper,we propose the statistical procedures which enable us to theoretically favor one system over one another.The McNemar's test is the statistical means by which the comparison of two ontology alignment systems over one matching task is drawn.The test applies to a 2x2 contingency table which can be constructed in two different ways based on the alignments,each of which has their own merits/pitfalls.The ways of the contingency table construction and various apposite statistics from the McNemar's test are elaborated in minute detail.In the case of having more than two alignment systems for comparison, the family-wise error rate is expected to happen. Thus, the ways of preventing such an error are also discussed.A directed graph visualizes the outcome of the McNemar's test in the presence of multiple alignment systems.From this graph, it is readily understood if one system is better than one another or if their differences are imperceptible.The proposed statistical methodologies are applied to the systems participated in the OAEI 2016 anatomy track, and also compares several well-known similarity metrics for the same matching problem

    An ontology matching approach for semantic modeling: A case study in smart cities

    Get PDF
    This paper investigates the semantic modeling of smart cities and proposes two ontology matching frameworks, called Clustering for Ontology Matching-based Instances (COMI) and Pattern mining for Ontology Matching-based Instances (POMI). The goal is to discover the relevant knowledge by investigating the correlations among smart city data based on clustering and pattern mining approaches. The COMI method first groups the highly correlated ontologies of smart-city data into similar clusters using the generic k-means algorithm. The key idea of this method is that it clusters the instances of each ontology and then matches two ontologies by matching their clusters and the corresponding instances within the clusters. The POMI method studies the correlations among the data properties and selects the most relevant properties for the ontology matching process. To demonstrate the usefulness and accuracy of the COMI and POMI frameworks, several experiments on the DBpedia, Ontology Alignment Evaluation Initiative, and NOAA ontology databases were conducted. The results show that COMI and POMI outperform the state-of-the-art ontology matching models regarding computational cost without losing the quality during the matching process. Furthermore, these results confirm the ability of COMI and POMI to deal with heterogeneous large-scale data in smart-city environments.publishedVersio

    Cross-language Ontology Learning: Incorporating and Exploiting Cross-language Data in the Ontology Learning Process

    Get PDF
    Hans Hjelm. Cross-language Ontology Learning: Incorporating and Exploiting Cross-language Data in the Ontology Learning Process. NEALT Monograph Series, Vol. 1 (2009), 159 pages. © 2009 Hans Hjelm. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/10126

    OM-2017: Proceedings of the Twelfth International Workshop on Ontology Matching

    Get PDF
    shvaiko2017aInternational audienceOntology matching is a key interoperability enabler for the semantic web, as well as auseful tactic in some classical data integration tasks dealing with the semantic heterogeneityproblem. It takes ontologies as input and determines as output an alignment,that is, a set of correspondences between the semantically related entities of those ontologies.These correspondences can be used for various tasks, such as ontology merging,data translation, query answering or navigation on the web of data. Thus, matchingontologies enables the knowledge and data expressed with the matched ontologies tointeroperate

    Language technologies for a multilingual Europe

    Get PDF
    This volume of the series “Translation and Multilingual Natural Language Processing” includes most of the papers presented at the Workshop “Language Technology for a Multilingual Europe”, held at the University of Hamburg on September 27, 2011 in the framework of the conference GSCL 2011 with the topic “Multilingual Resources and Multilingual Applications”, along with several additional contributions. In addition to an overview article on Machine Translation and two contributions on the European initiatives META-NET and Multilingual Web, the volume includes six full research articles. Our intention with this workshop was to bring together various groups concerned with the umbrella topics of multilingualism and language technology, especially multilingual technologies. This encompassed, on the one hand, representatives from research and development in the field of language technologies, and, on the other hand, users from diverse areas such as, among others, industry, administration and funding agencies. The Workshop “Language Technology for a Multilingual Europe” was co-organised by the two GSCL working groups “Text Technology” and “Machine Translation” (http://gscl.info) as well as by META-NET (http://www.meta-net.eu)

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Machine Learning for Auditory Hierarchy

    Get PDF
    Coleman, W. (2021). Machine Learning for Auditory Hierarchy. This dissertation is submitted for the degree of Doctor of Philosophy, Technological University Dublin. Audio content is predominantly delivered in a stereo audio file of a static, pre-formed mix. The content creator makes volume, position and effects decisions, generally for presentation in stereo speakers, but has no control ultimately over how the content will be consumed. This leads to poor listener experience when, for example, a feature film is mixed such that the dialogue is at a low level relative to the sound effects. Consumers can complain that they must turn the volume up to hear the words, but back down again because the effects levels are too loud. Addressing this problem requires a television mix optimised for the stereo speakers used in the vast majority of homes, which is not always available
    corecore