401 research outputs found

    Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network

    Get PDF
    Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus

    Detection of subjects with ischemic heart disease by using machine learning technique based on heart rate total variability parameters

    Get PDF
    OBJECTIVE: Ischemic heart disease (IHD), in its chronic stable form, is a subtle pathology due to its silent behavior before developing in unstable angina, myocardial infarction or sudden cardiac death. The clinical assessment is based on typical symptoms and finally confirmed, invasively, by coronary angiography. Recently, heart rate variability (HRV) analysis as well as some machine learning algorithms like Artificial Neural Networks (ANNs) were used to identify cardiovascular arrhythmias and, only in few cases, to classify IHD segments in a limited number of subjects. The goal of this study was the identification of the ANN structure and the HRV parameters producing the best performance to identify IHD patients in a non-invasive way, validating the results on a large sample of subjects. Moreover, we examined the influence of a clinical non-invasive parameter, the left ventricular ejection fraction (LVEF), on the classification performance.APPROACH: To this aim, we extracted several linear and non-linear parameters from 24h RR signal, considering both normal and ectopic beats (Heart Rate Total Variability), of 251 normal and 245 IHD subjects, matched by age and gender. ANNs using several different combinations of these parameters together with age and gender were tested. For each ANN, we varied the number of hidden neurons from 2 to 7 and simulated 100 times changing randomly training and test dataset.MAIN RESULTS: The HRTV parameters showed significant greater variability in IHD than in normal subjects. The ANN applied to meanRR, LF, LF/HF, Beta exponent, SD2 together with age and gender reached a maximum accuracy of 71.8% and, by adding as input LVEF, an accuracy of 79.8%.SIGNIFICANCE: The study provides a deep insight into how a combination of some HRTV parameters and LVEF could be exploited to reliably detect the presence of subjects affected by IHD

    Noise-tolerant Modular Neural Network System for Classifying ECG Signal

    Get PDF
    Millions of electrocardiograms (ECG) are interpreted every year, requiring specialized training for accurate interpretation. Because automated and accurate classification ECG signals will improve early diagnosis of heart condition, several neural network (NN) approaches have been proposed for classifying ECG signals. Current strategies for a critical step, the preprocessing for noise removal, are still unsatisfactory. We propose a modular NN approach based on artificial noise injection, to improve the generalization capability of the resulting model. The NN classifier initially performed a fairly accurate recognition of four types of cardiac anomalies in simulated ECG signals with minor, moderate, severe, and extreme noise, with an average accuracy of 99.2%, 95.1%, 91.4%, and 85.2% respectively. Ultimately we discriminated normal and abnormal heartbeat patterns for single lead of raw ECG signals, obtained 95.7% of overall accuracy and 99.5% of Precision. Therefore, the propose approach is a useful tool for the detection and diagnosis of cardiac abnormalities

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    ECG Classification with an Adaptive Neuro-Fuzzy Inference System

    Get PDF
    Heart signals allow for a comprehensive analysis of the heart. Electrocardiography (ECG or EKG) uses electrodes to measure the electrical activity of the heart. Extracting ECG signals is a non-invasive process that opens the door to new possibilities for the application of advanced signal processing and data analysis techniques in the diagnosis of heart diseases. With the help of today’s large database of ECG signals, a computationally intelligent system can learn and take the place of a cardiologist. Detection of various abnormalities in the patient’s heart to identify various heart diseases can be made through an Adaptive Neuro-Fuzzy Inference System (ANFIS) preprocessed by subtractive clustering. Six types of heartbeats are classified: normal sinus rhythm, premature ventricular contraction (PVC), atrial premature contraction (APC), left bundle branch block (LBBB), right bundle branch block (RBBB), and paced beats. The goal is to detect important characteristics of an ECG signal to determine if the patient’s heartbeat is normal or irregular. The results from three trials indicate an average accuracy of 98.10%, average sensitivity of 94.99%, and average specificity of 98.87%. These results are comparable to two artificial neural network (ANN) algorithms: gradient descent and Levenberg Marquardt, as well as the ANFIS preprocessed by grid partitioning

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    Nonlinear dynamics and modeling of heart and brain signals

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore