761 research outputs found

    An integrated quantitative framework for supporting product design : the case of metallic moulds for injection

    Get PDF
    Tese de Doutoramento. Programa Doutoral em Engenharia Industrial e GestĂŁo. Faculdade de Engenharia. Universidade do Porto. 201

    Dynamic optimisation for energy efficiency of injection moulding process

    Get PDF
    Low carbon economy has emerged as an important task in China since the energy intensity and carbon intensity reduction targets were clearly prescribed in its recent Twelfth Five-Year Plan during 2011-2015. While the largest enterprises have undertaken initial initiative to reduce their energy consumption, small and medium-sized enterprises (SMEs) will need to share the responsibilities in meeting the nation’s targets. However, there is no established structure for helping SMEs to reduce their efficiency gap and hence the implementation of energy-saving measures in SMEs still remains patchy. Addressing this issue, this thesis seeks to understand the critical barriers faced by SMEs and aims to develop proprietary methodologies that can facilitate manufacturing SMEs to close their efficiency gap. Process parameters optimisation is perceived to be an effective “no-cost” strategy which can be conducted by SMEs to realise energy efficiency improvement. A unique design of experiment (DOE) introduced by Dorian Shainin offers a simplistic framework to study process optimisation, but its application is not widespread and being criticised over its working principles. In order to address the inherent limitations of the Shainin’s method, it was integrated with the multivariate statistical methods and the signal-response system in the empirical study. The nature of the research aim also requires a theoretical approach to evaluate the economic performance of the energy efficiency investment. Hence, a spreadsheet-based decision support system (file SERP.xlsm) was created via dynamic programming (DP) method. The main contributions of this thesis can be subdivided into empirical level and theoretical level. At the empirical level, a technically feasible yet economically viable approach called “multi-response dynamic Shainin DOE” was developed. An empirical study on the injection moulding process was presented to examine the validity of this novel integrated methodology. The emphasis has been on the integration of multivariate techniques and signal-response analysis. The former successfully identified the critical factors to energy consumption and moulded parts’ impact performance regardless of the great fluctuation in the impact response. The latter enables the end-user to achieve different performance output based on the particular intent. At the theoretical level, the “DP-based spreadsheet solution” provides a convenient platform to help the rationally-behaved decision makers evaluate the energy efficiency investments. A simple hypothetical case study on the injection moulding industry was illustrated how the decision-making process for equipment replacement can evolve over time. To sum up, both proprietary methodologies enhance the dynamicity in the optimisation process to support injection moulding industry in closing their efficiency gap. The study at the empirical level was limited by the absence of real industrial case study where it is important to justify the practicality of the proposed methodology. Regarding the theoretical level, the dataset for initial validation on the spreadsheet solution was not available. Finally, it is important to continue the future work on the research limitations in order to increase the cogency of the proprietary methodologies for common use in the industry

    Optimization of polymer processing: a review (Part II - Molding technologies)

    Get PDF
    The application of optimization techniques to improve the performance of polymer processing technologies is of great practical consequence, since it may result in significant savings of materials and energy resources, assist recycling schemes and generate products with better properties. The present review aims at identifying and discussing the most important characteristics of polymer processing optimization problems in terms of the nature of the objective function, optimization algorithm, and process modelling approach that is used to evaluate the solutions and the parameters to optimize. Taking into account the research efforts developed so far, it is shown that several optimization methodologies can be applied to polymer processing with good results, without demanding important computational requirements. Furthermore, within the field of artificial intelligence, several approaches can reach significant success. The first part of this review demonstrated the advantages of the optimization approach in polymer processing, discussed some concepts on multi-objective optimization and reported the application of optimization methodologies to single and twin screw extruders, extrusion dies and calibrators. This second part focuses on injection molding, blow molding and thermoforming technologies.This research was funded by NAWA-Narodowa Agencja Wymiany Akademickiej, under grant PPN/ULM/2020/1/00125 and European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie Grant Agreement No 734205–H2020-MSCA-RISE-2016. The authors also acknowledge the funding by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UIDB/05256/2020, UIDP/05256/2020

    Development of Injection Molding Pressure Monitoring System Using Piezoelectric Sensor

    Get PDF
    Injection molding is one of the most popular techniques for global plastic production. With this automation technique, the plastic product can be manufactured at a low cost with a complex geometrical shape. A manufacturing process with the high productivity of an injection molding machine depends on molding pressure and temperature inside the mold cavity. In this research, an experimental work is performed to determine a process monitoring system using asynchronous data acquisition, through the incorporation of wired piezo-ceramic sensor to acquire pressure of injection molding system. This piezoelectric sensor is designed in such a way that, a Bluetooth device can be connected with a sensor and can take live data reading of parameters from the running molding machine

    Dynamic optimisation for energy efficiency of injection moulding process

    Get PDF
    Low carbon economy has emerged as an important task in China since the energy intensity and carbon intensity reduction targets were clearly prescribed in its recent Twelfth Five-Year Plan during 2011-2015. While the largest enterprises have undertaken initial initiative to reduce their energy consumption, small and medium-sized enterprises (SMEs) will need to share the responsibilities in meeting the nation’s targets. However, there is no established structure for helping SMEs to reduce their efficiency gap and hence the implementation of energy-saving measures in SMEs still remains patchy. Addressing this issue, this thesis seeks to understand the critical barriers faced by SMEs and aims to develop proprietary methodologies that can facilitate manufacturing SMEs to close their efficiency gap. Process parameters optimisation is perceived to be an effective “no-cost” strategy which can be conducted by SMEs to realise energy efficiency improvement. A unique design of experiment (DOE) introduced by Dorian Shainin offers a simplistic framework to study process optimisation, but its application is not widespread and being criticised over its working principles. In order to address the inherent limitations of the Shainin’s method, it was integrated with the multivariate statistical methods and the signal-response system in the empirical study. The nature of the research aim also requires a theoretical approach to evaluate the economic performance of the energy efficiency investment. Hence, a spreadsheet-based decision support system (file SERP.xlsm) was created via dynamic programming (DP) method. The main contributions of this thesis can be subdivided into empirical level and theoretical level. At the empirical level, a technically feasible yet economically viable approach called “multi-response dynamic Shainin DOE” was developed. An empirical study on the injection moulding process was presented to examine the validity of this novel integrated methodology. The emphasis has been on the integration of multivariate techniques and signal-response analysis. The former successfully identified the critical factors to energy consumption and moulded parts’ impact performance regardless of the great fluctuation in the impact response. The latter enables the end-user to achieve different performance output based on the particular intent. At the theoretical level, the “DP-based spreadsheet solution” provides a convenient platform to help the rationally-behaved decision makers evaluate the energy efficiency investments. A simple hypothetical case study on the injection moulding industry was illustrated how the decision-making process for equipment replacement can evolve over time. To sum up, both proprietary methodologies enhance the dynamicity in the optimisation process to support injection moulding industry in closing their efficiency gap. The study at the empirical level was limited by the absence of real industrial case study where it is important to justify the practicality of the proposed methodology. Regarding the theoretical level, the dataset for initial validation on the spreadsheet solution was not available. Finally, it is important to continue the future work on the research limitations in order to increase the cogency of the proprietary methodologies for common use in the industry

    Predictive Methodology for Quality Assessment in Injection Molding Comparing Linear Regression and Neural Networks

    Get PDF
    The use of recycled polypropylene in industry to reduce environmental impact is increasing. Design for manufacturing and process simulation is a key stage in the development of plastic parts. Traditionally, a trial-and-error methodology is followed to eliminate uncertainties regarding geometry and process. A new proposal is presented, combining simulation with the design of experiments and creating prediction models for seven different process and part quality output features. These models are used to optimize the design without developing additional time-consuming simulations. The study aims to compare the precision and correlation of these models. The methods used are linear regression and artificial neural network (ANN) fitting. A wide range of eight injection parameters and geometry variations are used as inputs. The predictability of nonlinear behavior and compensatory effects due to the complex relationships between this wide set of parameter combinations is analyzed further in the state of the art. Results show that only Back Propagation Neural Networks (BPNN) are suitable for correlating all quality features in a single formula. The use of prediction models accelerates the optimization of part design, applying multiple criteria to support decision-making. The methodology is applied to the design of a plastic support for induction hobs. Furthermore, this methodology has demonstrated that a weight reduction of 27% is feasible. However, it is necessary to combine process parameters that differ from the standard ones with a non-uniform thickness distribution so that the remaining injection parameters, material properties, and dimensions fall within tolerances

    dP-FMEA: An innovative Failure Mode and Effects Analysis for distributed manufacturing processes

    Get PDF
    The Failure Mode and Effects Analysis (FMEA) is a powerful tool to design and maintain reliable systems (products, services or manufacturing processes), investigating their potential failure modes from the threefold perspective of severity, occurrence and detection. The Process FMEA, or more briefly P-FMEA, is a declination of the FMEA for manufacturing processes (or parts of them). Being progressively characterized by decentralized networks of flexible manufacturing facilities, the current scenario significantly hampers the implementation of the traditional P-FMEA, which requires the joint work of a group of experts formulating collective judgments. This paper revises the traditional P-FMEA approach and integrates it with the ZMII-technique – i.e. a recent aggregation technique based on the combination of the Thurstone’s Law of Comparative Judgment and the Generalized Least Squares method – allowing experts distributed through organizations to formulate their judgments individually. The revised approach – referred to as “distributed-Process FMEA” or more briefly dP-FMEA – allows to manage a number of experts, without requiring them to physically meet and formulate collective decisions, thus overcoming a relevant limitation of the traditional P-FMEA. The dP-FMEA approach also includes a relatively versatile response mode and overcomes several other limitations of the traditional approach, including but not limited to: (i) arbitrary formulation and aggregation of expert judgments, (ii) lack of consideration of the dispersion of these judgments, and (iii) lack of estimation of the uncertainty of results. The description is supported by a real-life application example concerning a plastic injection-molding process

    Optimization of the injection moulding process: from polymer plasticating to final part properties

    Get PDF
    Tese de doutoramento em Science and Polymer Engineering and CompositesRecently several scientific studies on the injection moulding process have addressed the establishment of relationships between the thermomechanical, the material morphology and the resultant moulding’s mechanical behavior. However, the absence of a link between the plasticating and filling phases of the process is evident in several studies. But the final conditions (e.g., thermal, homogenization) gathered in the plasticating phase are the initial conditions for the following ones, which can determine the moulded product properties and quality. The main objective of this work is to integrate the plasticating and filling and postfilling phases in order to develop computational tools able to optimize automatically the injection moulding process. Therefore, will be possible the optimization of the injection moulding process through the application of multi-objective evolutionary algorithms based methodology. Simultaneously, the establishment of relationships between the processing conditions, the thermomechanical environment, the induced morphology and the mechanical properties allow the optimization of the performance of injection moulded parts.Recentemente vĂĄrios trabalhos cientĂ­ficos sobre o processo de injeção tĂȘm estabelecido relaçÔes entre a termomecĂąnica do material, a sua morfologia e o comportamento mecĂąnico da moldação. No entanto, Ă© evidente em diversos estudos a ausĂȘncia de uma ligação entre as fases de plasticização e enchimento da moldação. No entanto, as condiçÔes finais (por exemplo, tĂ©rmicas, uniformização do material) obtidas na fase de plasticização sĂŁo as condiçÔes iniciais das fases seguintes, determinando assim as propriedades e a qualidade do produto final. O objectivo principal deste trabalho Ă© a integração das fases de plasticização, enchimento e pĂłs-enchimento do processo de moldação por injeção com vista ao desenvolvimento de ferramentas computacionais capazes de otimizar o processo automaticamente. Assim, serĂĄ possĂ­vel a otimização das condiçÔes operatĂłrias atravĂ©s do desenvolvimento de uma metodologia baseada em algoritmos evolutivos multi-objetivo. SimultĂąneamente, serĂĄ possĂ­vel estabelecer relaçÔes entre as condiçÔes de processamento, o ambiente termomecĂąnico, a morfologia induzida no material e as propriedades mecĂąnicas de forma a otimizar as caraterĂ­sticas finais das peças

    Life jacket

    Get PDF
    Anyone who cannot swim well should wear life jacket whether they are in the water or around the water. Even those who are can swim well should wear the life jacket when they are doing activity such as swimming, fishing, boating or while doing any water-related activity. Life jacket is a kind of safety jacket that keeping the wearer float the in the water. The wearer may be in the conscious or unconscious condition but by wearing the life jacket we can minimize the risk of drowning because life jacket assist the wearer to keep floating in the water
    • 

    corecore