416 research outputs found

    NUVA: A Naming Utterance Verifier for Aphasia Treatment

    Get PDF
    Anomia (word-finding difficulties) is the hallmark of aphasia, an acquired language disorder most commonly caused by stroke. Assessment of speech performance using picture naming tasks is a key method for both diagnosis and monitoring of responses to treatment interventions by people with aphasia (PWA). Currently, this assessment is conducted manually by speech and language therapists (SLT). Surprisingly, despite advancements in automatic speech recognition (ASR) and artificial intelligence with technologies like deep learning, research on developing automated systems for this task has been scarce. Here we present NUVA, an utterance verification system incorporating a deep learning element that classifies 'correct' versus' incorrect' naming attempts from aphasic stroke patients. When tested on eight native British-English speaking PWA the system's performance accuracy ranged between 83.6% to 93.6%, with a 10-fold cross-validation mean of 89.5%. This performance was not only significantly better than a baseline created for this study using one of the leading commercially available ASRs (Google speech-to-text service) but also comparable in some instances with two independent SLT ratings for the same dataset

    Towards Automatic Speech-Language Assessment for Aphasia Rehabilitation

    Full text link
    Speech-based technology has the potential to reinforce traditional aphasia therapy through the development of automatic speech-language assessment systems. Such systems can provide clinicians with supplementary information to assist with progress monitoring and treatment planning, and can provide support for on-demand auxiliary treatment. However, current technology cannot support this type of application due to the difficulties associated with aphasic speech processing. The focus of this dissertation is on the development of computational methods that can accurately assess aphasic speech across a range of clinically-relevant dimensions. The first part of the dissertation focuses on novel techniques for assessing aphasic speech intelligibility in constrained contexts. The second part investigates acoustic modeling methods that lead to significant improvement in aphasic speech recognition and allow the system to work with unconstrained speech samples. The final part demonstrates the efficacy of speech recognition-based analysis in automatic paraphasia detection, extraction of clinically-motivated quantitative measures, and estimation of aphasia severity. The methods and results presented in this work will enable robust technologies for accurately recognizing and assessing aphasic speech, and will provide insights into the link between computational methods and clinical understanding of aphasia.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140840/1/ducle_1.pd

    Automating Intended Target Identification for Paraphasias in Discourse using a large language model

    Get PDF
    Purpose: To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings. Method: Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically ā€œfill in the blankā€ of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments\u27 predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors. Results: The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia. Conclusions: We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility

    Differentiation of Aphasic Patients from the Normal Control Via a Computational Analysis of Korean Utterances

    Get PDF
    Spontaneous speech provides rich information defining the linguistic characteristics of individuals. As such, computational analysis of speech would enhance the efficiency involved in evaluating patientsā€™ speech. This study aims to provide a method to differentiate the persons with and without aphasia based on language usage. Ten aphasic patients and their counterpart normal controls participated, and they were all tasked to describe a set of given words. Their utterances were linguistically processed and compared to each other. Computational analyses from PCA (Principle Component Analysis) to machine learning were conducted to select the relevant linguistic features, and consequently to classify the two groups based on the features selected. It was found that functional words, not content words, were the main differentiator of the two groups. The most viable discriminators were demonstratives, function words, sentence final endings, and postpositions. The machine learning classification model was found to be quite accurate (90%), and to impressively be stable. This study is noteworthy as it is the first attempt that uses computational analysis to characterize the word usage patterns in Korean aphasic patients, thereby discriminating from the normal group.ope

    Time reference in standard Indonesian agrammatic aphasia

    Get PDF
    • ā€¦
    corecore