784 research outputs found

    Stressed-eye analysis and jitter separation for high-speed serial links

    Get PDF
    As the computer and electronics industry moves towards higher data rates, the most important concern in the field of signal integrity is jitter. A data communication link path often consists of a transmitter, a channel, and a receiver. Many mechanisms can contribute to jitter, a timing uncertainty in the received signal. For example, transmitters have intrinsic noise sources that contribute to random jitter and to certain types of deterministic jitter. In addition, external coupling may cause periodic jitter. The bandwidth limitation of the channel also contributes to a fourth type of jitter, inter-symbol interference. This thesis studies the various components of jitter and uses mathematical models of them to simulate an actual transmitter. These models allow the injection of various jitter components for stressed-eye testing. To understand the sources of jitter in a received signal, this work studies the manifestation of each jitter component in the time-interval error spectrum is studied and develops procedures to separate the jitter components. These jitter decomposition procedures are compared and validated with real-time and sampling scopes. Bathtub curves and jitter transfer functions were also calculated to facilitate high-speed link path designs. Based on the link-path and jitter analysis algorithms developed here, a cable certification tool was also designed to certify the small form factor pluggable copper cable assemblies against SFF-8431 specifications. This project implemented the framework of the certification tool --Abstract, page iii

    Models predicting the performance of IC component or PCB channel during electromagnetic interference

    Get PDF
    This dissertation is composed of three papers, which cover the prediction of the characteristics of jitter due to crosstalk and due to simultaneous switching noise, and covers susceptibility of delay locked loop (DLL) to electromagnetic interference. In the first paper, an improved tail-fit de-convolution method is proposed for characterizing the impact of deterministic jitter in the presence of random jitter. A Wiener filter de-convolution method is also presented for extracting the characteristics of crosstalk induced jitter from measurements of total jitter made when the crosstalk sources were and were not present. The proposed techniques are shown to work well both in simulations and in measurements of a high-speed link. In the second paper, methods are developed to predict the statistical distribution of timing jitter due to dynamic currents drawn by an integrated circuit (IC) and the resulting power supply noise on the PCB. Distribution of dynamic currents is found through vectorless methods. Results demonstrate the approach can rapidly determine the average and standard deviation of the power supply noise voltage and the peak jitter within 5~15% error, which is more than sufficient for predicting the performance impact on integrated circuits. In the third paper, a model is developed to predict the susceptibility of a DLL to electromagnetic noise on the power supply. With the proposed analytical noise transfer function, peak to peak jitter and cycle to cycle jitter at the DLL output can be estimated, which can be use to predict when soft failures will occur and to better understand how to fix these failures. Simulation and measurement results demonstrate the accuracy of the DLL delay model. --Abstract, page iv

    Equalization Architectures for High Speed ADC-Based Serial I/O Receivers

    Get PDF
    The growth in worldwide network traïŹƒc due to the rise of cloud computing and wireless video consumption has required servers and routers to support increased serial I/O data rates over legacy channels with signiïŹcant frequency-dependent attenuation. For these high-loss channel applications, ADC-based high-speed links are being considered due to their ability to enable powerful digital signal processing (DSP) algorithms for equalization and symbol detection. Relative to mixed-signal equalizers, digital implementations oïŹ€er robustness to process, voltage and temperature (PVT) variations, are easier to reconïŹgure, and can leverage CMOS technology scaling in a straight-forward manner. Despite these advantages, ADC-based receivers are generally more complex and have higher power consumption relative to mixed-signal receivers. The ensuing digital equalization can also consume a signiïŹcant amount of power which is comparable to the ADC contribution. Novel techniques to reduce complexity and improve power eïŹƒciency, both for the ADC and the subsequent digital equalization, are necessary. This dissertation presents eïŹƒcient modeling and implementation approaches for ADC-based serial I/O receivers. A statistical modeling framework is developed, which is able to capture ADC related errors, including quantization noise, INL/DNL errors and time interleaving mismatch errors. A novel 10GS/s hybrid ADC-based receiver, which combines both embedded and digital equalization, is then presented. Leveraging a time-interleaved asynchronous successive approximation ADC architecture, a new structure for 3-tap embedded FFE inside the ADC with low power/area overhead is used. In addition, a dynamically-enabled digital 4-tap FFE + 3-tap DFE equalizer architecture is introduced, which uses reliable symbol detection to achieve remarkable savings in the digital equalization power. Measurement results over several FR4 channels verify the accuracy of the modeling approach and the eïŹ€ectiveness of the proposed receiver. The comparison of the fabricated prototype against state-of-the-art ADC-based receivers shows the ability of the proposed archi-tecture to compensate for the highest loss channel, while achieving the best power eïŹƒciency among other works

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Deterministic Jitter in Broadband Communication

    Get PDF
    The past decade has witnessed a drastic change in the design of high-speed serial links. While Silicon fabrication technology has produced smaller, faster transistors, transmission line interconnects between chips and through backplanes have not substantially improved and have a practical bandwidth of around 3GHz. As serial link speeds increase, new techniques must be introduced to overcome the bandwidth limitation and maintain digital signal integrity. This thesis studies timing issues pertaining to bandwidth-limited interconnects. Jitter is defined as the timing uncertainty at a threshold used to detect the digital signal. Reliable digital communication requires minimizing jitter. The analysis and modeling presented here focuses on two types of deterministic jitter. First, dispersion of the digital signal in a bandwidth-limited channel creates data-dependent jitter. Our analysis links data sequences to unique timing deviations through the channel response and is shown for general linear time-invariant systems. A Markov model is constructed to study the impact of jitter on the operation of the serial link and provide insight in circuit performance. Second, an analysis of bounded-uncorrected jitter resulting from crosstalk induced in parallel serial links is presented. Timing equalization is introduced to improve the signal integrity of high-speed links. The analysis of deterministic jitter leads to novel techniques for compensating the timing ambiguity in the received data. Data-dependent jitter equalization is discussed at both the receiver, where it complements the operation of clock and data recovery circuits, and as a phase pre-emphasis technique. Crosstalk-induced, bounded-uncorrected jitter can also be compensated. By detecting electromagnetic modes between neighboring serial links, a transmitter or receiver anticipates the timing deviation that has occurred along the transmission line. Finally, we discuss a new circuit technique for submillimeter integrated circuits. Demands of wireless communication and the high speed of Silicon Germanium transistors provide opportunities for unique radio architectures for submillimeter integrated circuits. Scalable, fully-integrated phased arrays control a radiated beam pattern electronically through tiling multiple chips. Coupled-oscillator arrays are used for the first time to subharmonically injection-lock across a chip or between multiple chips to provide phase coherence across an array.</p
    • 

    corecore