101 research outputs found

    Establishing probability of failure of a system due to electromagnetic interference

    Get PDF
    Scope and Method of Study:A wire placed inside the metallic box will serve as the equipment under test and the distributions of current and fields will be calculated via measurements. From the distribution, the probability of the observable exceeding a certain threshold can be determined. From the nature of the EME generated, the probability of threat due to EMI can be derived under some assumptions. Combining both the probabilities, the net probability of failure of the system could be determined. Reverberation chambers will be useful in measurements in this study as they simulate operating conditions of the EUT inside a cavity and as the EUT is exposed in all directions to the electromagnetic field, the uncertainty is also reduced. The probability models can provide insight into what type of testing is required to assure worst case testing with reasonable accuracy.Findings and Conclusions:The final outcome of this work is to establish the probability of failure due to current coupled onto a cable or a cable bundle located close to the wall of a cavity due to external or internal coupling of EM. The electromagnetic environment of the cavity was determined to estimate the probability of threat depending on the location of the cable inside the cavity. Given that the probability of threat exists, then the probability that the value of the current exceeding a certain threshold was determined. The environment in which the EUT operates and the influence of the environment on the observable that is being targeted was also determined which aids in the calculation of threshold probability. Finally, the net probability of failure of a system was determined from the individual probabilities. The major focus of this work was on the development of the methodology that is sufficiently general to obtain the distribution of any observable. The procedure developed could be used in different scenarios and from a class of distributions developed for each scenario, the probability of threat and probability of failure of a system due to EMI can be calculated

    Développement d'une méthodologie pour l'évaluation de l'exposition réelle des personnes aux champs électromagnétiques

    Get PDF
    The work presented in the thesis is directed towards addressing the requirement for determining the radio frequency (RF) exposure due to mobile phones under typical usage/ real-life scenarios and also to develop a method to predict and compare mobile phones for their real-life RF exposure. The mobile phones are characterized for their specific absorption rate (SAR) and for transmit and receive performance given by the over-the-air (OTA) characterization. Using the SAR and the total radiated power (TRP) characterization, an exposure index referred to as the SAROTA index was previously proposed to predict the real-life exposure due to mobile phones which would also serve as a metric to compare individual phones. In order to experimentally determine the real-life RF exposure, various software modified phones (SMP) are utilized for the study. These phones contain an embedded software capable of recording the network parameters. The study is undertaken in the following order: (a) Characterization of the available tools and resources for performing targeted measurements/experiments, (b) identifying the important radio resource parameters and metrics to perform the targeted measurements, (c) investigation of the actual implementation of the power control mechanism in a live network for various received signal level and received quality environments, (d) investigating the correlation of the over-the-air performance of the mobile phones and the extent of actual power control realization, (e) comparing the actual exposure and the real-life exposure as predicted by the SAROTA index. Based on the logistical and technical challenges encountered, the experiments were restricted to indoor environments to enable repeatability. During the first phase of the study, the stability of the indoor environment was evaluated. During the second phase, the influence of hand phantom on the SAR and TRP of the mobile phones and the capability of the SAROTA index to predict the exposure was investigated. Further developing on the insights from the hand phantom experiments, in the third phase, a set of identical software modified phones were externally modified to alter the TRP performance and the methodology to determine the real-life exposure and also verify the capability of the SAROTA index to predict the exposure levels was investigated. The experiments demonstrate that the SAROTA index is capable of predicting the real-life exposure and comparing the mobile phones.Le travail présenté dans cette thèse a pour objectif l’étude des conditions nécessaires pour évaluer l'exposition radio fréquence (RF) due aux téléphones mobiles dans un scenario d’utilisation réelle et le développement d’une méthodologie permettant de prédire et de comparer les téléphones mobiles en fonction de leurs expositions RF réelles. Les téléphones mobiles sont caractérisés par leur débit d'absorption spécifique (DAS) et leur performance en émission et en réception (over-the-air, OTA). En utilisant le DAS et la puissance totale rayonnée (PTR), un indice d'exposition appelée l'indice SAROTA a été proposé précédemment afin de prévoir l'exposition réelle des téléphones mobiles. L’indice SAROTA sert ainsi de métrique permettant de comparer les téléphones mobiles. Afin de déterminer expérimentalement l’exposition réelle aux RF, plusieurs téléphones avec des modifications logicielles permettant d’enregistrer les paramètres du réseau, sont utilisés pour l’étude qui est menée comme suit : (a) caractérisation des outils et des ressources disponibles pour effectuer des mesures ciblées, (b) identification des ressources radio et des paramètres importants pour effectuer ces mesures, (c) étude de la mise en œuvre effective du mécanisme de contrôle de puissance observé dans un réseau mobile réel pour différents niveaux et de qualités du signal reçus, (d) étude de la corrélation entre la performance OTA des téléphones mobiles et l’étendue effective du contrôle de puissance appliquée par le réseau, (e) comparaison entre la valeur réelle de l’exposition et la valeur prédite en utilisant l’indice SAROTA. Comme les défis logistiques et techniques sont plus difficiles à surmonter pour les mesures dans un environnement multi-trajets extérieur, les expériences ont été limitées à des environnements intérieurs pour assurer une meilleure répétabilité des mesures. Lors d’une première phase de l’étude, la stabilité de l’environnement intérieur a été évaluée. Lors d’une deuxième phase, l’influence de la main sur le DAS et la PTR des téléphones mobiles ainsi que sur l’évaluation de l’exposition réelle prédite par l’indice SAROTA a été étudiée. Lors d’une troisième phase, un ensemble de téléphones mobiles identiques ont été modifiés et des mesures effectuées pour vérifier que l’indice SAROTA permet bien de prédire l’exposition réelle des personnes

    Prediction of wireless communication systems performance in indoor applications

    Get PDF
    Due to a shift in the interest in wireless applications, from outdoor to indoor environments. new modelling solutions had to be designed to account for the immense complexity of the latter. Essentially, two categories of indoor propagation models prevailed until the mid-90's: the Empirical and the Physical models. They both predicted important characteristics of a given confined environment like the coverage area, transmitted power requirements. number and location of base stations or access points. The implementation of wireless communications systems onboard naval assets is expected to offer numerous advantages and enhance the existing shipboard communications systems. That, in turn, calls for a reliable and cost-effective means of estimating the expected link budget in such environments, especially when the infrastructure in question is yet to be built, as is the case in a ship class under development. This thesis treats the problem of indoor propagation modeling using the Numerical Electromagnetic Code-Basic Scattering Code (NEC-BSC) and compares the predicted results obtained by this code with actual measurements performed inside a building at the Naval Postgraduate School. A number of important conclusions regarding the validity of NEC-BSC for indoor applications are being reached and some intriguing statistical results are being presented.http://www.archive.org/details/predictionofwire00bolaLieutenant, Hellenic NavyApproved for public release; distribution is unlimited

    Wide-band channel sounding in the bands above 2GHz

    Get PDF
    Modem telecommunication services require increasing data rates for both mobile and fixed applications. At frequencies in the range 2.5 GHz to 6 GHz physical constraints on the size of equipment result in antenna with moderate directivity typically with an antenna beam width of 20 degrees or greater. Thus building and ground clutter is present within the first Fresnel zones of the antenna system which gives rise to multi-path propagation. This multi-path propagation (average delay and RMS delay spread) has been investigated using a wideband FMCW channel sounder that is capable of operation at a number of frequencies. The channel sounder has been based upon a parallel architecture sounder operating within the 2 GHz band with a number of frequency conversion modules to translate operation to the new frequency bands under study. Two primary configurations have been explored. In the first of these, propagation has been measured simultaneously within the 2.5 GHz, 3.4 GHz and 5.7 GHz bands. This is believed to be novel and original. In the second configuration four parallel channels operating within the 5.7 GHz band may be operated simultaneously. This configuration supports multiple antennas at the receiver. To support the work in the bands from 2.5 GHz to 6 GHz wideband discone antenna have been designed and fabricated. A system to provide relative gain and phase calibration for up to four antennas has been developed and demonstrated. This is also believed to represent a novel method of performing antenna and array calibration. Finally, the frequency converters have been used in conjunction with additional components to provide an FMCพ sounder operating within the 60 GHz Oxygen absorption band. This work is novel in that up to 1 GHz of spectrum can be swept. To support this work a significant number of microwave components have been designed and developed. In particular a novel wide band balanced X3 multiplier and a novel impedance-matched amplitude-equaliser (to provide amplifier gain-slope equalisation) has been developed. Channel soundings have been performed at three frequencies simultaneously using band specific and common antenna. The average delay and RMS delay spread have been demonstrated to be essentially frequency independent for the environments evaluated

    Modelling of radio wave propagation using Finite Element Analysis.

    Get PDF
    Fourth generation (4G) wireless communication systems are intended to support high data rates which requires careful and accurate modelling of the radio environment. In this thesis, for the first time finite clement based accurate and computationally efficient models of wave propagation in different outdoor and indoor environments has been developed. Three different environments were considered: the troposphere, vegetation and tunnels and wave propagation in these environments were modelled using finite element analysis. Use of finite elements in wave propagation modelling is a novel idea although many propagation models and approaches were used in past. Coverage diagrams, path loss contours and power levels were calculated using developed models in the troposphere, vegetation and tunnels. Results obtained were compared with commercially available software Advanced Refractive Effects Prediction Software (AREPS) to validate the accuracy of the developed approach and it is shown that results were accurate with an accuracy of 3dB. The developed models were very flexible in handling complex geometries and similar analysis can be easily extended to other environments. A fully vectored finite element base propagation model was developed for straight and curved tunnels. An optimum range of values of different electrical parameters for tunnels of different shapes has been derived. The thesis delivered a novel approach to modelling radio channels that provided a fast and accurate solution of radio wave propagation in realistic environments. The results of this thesis will have a great impact in modelling and characterisation of future wireless communication systems

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures
    • …
    corecore