172 research outputs found

    An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach

    Full text link
    Epilepsy is a neurological disorder and for its detection, encephalography (EEG) is a commonly used clinical approach. Manual inspection of EEG brain signals is a time-consuming and laborious process, which puts heavy burden on neurologists and affects their performance. Several automatic techniques have been proposed using traditional approaches to assist neurologists in detecting binary epilepsy scenarios e.g. seizure vs. non-seizure or normal vs. ictal. These methods do not perform well when classifying ternary case e.g. ictal vs. normal vs. inter-ictal; the maximum accuracy for this case by the state-of-the-art-methods is 97+-1%. To overcome this problem, we propose a system based on deep learning, which is an ensemble of pyramidal one-dimensional convolutional neural network (P-1D-CNN) models. In a CNN model, the bottleneck is the large number of learnable parameters. P-1D-CNN works on the concept of refinement approach and it results in 60% fewer parameters compared to traditional CNN models. Further to overcome the limitations of small amount of data, we proposed augmentation schemes for learning P-1D-CNN model. In almost all the cases concerning epilepsy detection, the proposed system gives an accuracy of 99.1+-0.9% on the University of Bonn dataset.Comment: 18 page

    Delay Differential Analysis of Seizures in Multichannel Electrocorticography Data

    Get PDF
    High-density electrocorticogram (ECoG) electrodes are capable of recording neurophysiological data with high temporal resolution with wide spatial coverage. These recordings are a window to understanding how the human brain processes information and subsequently behaves in healthy and pathologic states. Here, we describe and implement delay differential analysis (DDA) for the characterization of ECoG data obtained from human patients with intractable epilepsy. DDA is a time-domain analysis framework based on embedding theory in nonlinear dynamics that reveals the nonlinear invariant properties of an unknown dynamical system. The DDA embedding serves as a low-dimensional nonlinear dynamical basis onto which the data are mapped. This greatly reduces the risk of overfitting and improves the method's ability to fit classes of data. Since the basis is built on the dynamical structure of the data, preprocessing of the data (e.g., filtering) is not necessary. We performed a large-scale search for a DDA model that best fit ECoG recordings using a genetic algorithm to qualitatively discriminate between different cortical states and epileptic events for a set of 13 patients. A single DDA model with only three polynomial terms was identified. Singular value decomposition across the feature space of the model revealed both global and local dynamics that could differentiate electrographic and electroclinical seizures and provided insights into highly localized seizure onsets and diffuse seizure terminations. Other common ECoG features such as interictal periods, artifacts, and exogenous stimuli were also analyzed with DDA. This novel framework for signal processing of seizure information demonstrates an ability to reveal unique characteristics of the underlying dynamics of the seizure and may be useful in better understanding, detecting, and maybe even predicting seizures

    Fractal and Multifractal Properties of Electrographic Recordings of Human Brain Activity: Toward Its Use as a Signal Feature for Machine Learning in Clinical Applications

    Get PDF
    The brain is a system operating on multiple time scales, and characterisation of dynamics across time scales remains a challenge. One framework to study such dynamics is that of fractal geometry. However, currently there exists no established method for the study of brain dynamics using fractal geometry, due to the many challenges in the conceptual and technical understanding of the methods. We aim to highlight some of the practical challenges of applying fractal geometry to brain dynamics and propose solutions to enable its wider use in neuroscience. Using intracranially recorded EEG and simulated data, we compared monofractal and multifractal methods with regards to their sensitivity to signal variance. We found that both correlate closely with signal variance, thus not offering new information about the signal. However, after applying an epoch-wise standardisation procedure to the signal, we found that multifractal measures could offer non-redundant information compared to signal variance, power and other established EEG signal measures. We also compared different multifractal estimation methods and found that the Chhabra-Jensen algorithm performed best. Finally, we investigated the impact of sampling frequency and epoch length on multifractal properties. Using epileptic seizures as an example event in the EEG, we show that there may be an optimal time scale for detecting temporal changes in multifractal properties around seizures. The practical issues we highlighted and our suggested solutions should help in developing a robust method for the application of fractal geometry in EEG signals. Our analyses and observations also aid the theoretical understanding of the multifractal properties of the brain and might provide grounds for new discoveries in the study of brain signals. These could be crucial for understanding of neurological function and for the developments of new treatments.Comment: Final version published at Frontiers in Physiology. https://doi.org/10.3389/fphys.2018.0176

    Accurate detection of spontaneous seizures using a generalized linear model with external validation

    Get PDF
    Objective Seizure detection is a major facet of electroencephalography (EEG) analysis in neurocritical care, epilepsy diagnosis and management, and the instantiation of novel therapies such as closed-loop stimulation or optogenetic control of seizures. It is also of increased importance in high-throughput, robust, and reproducible pre-clinical research. However, seizure detectors are not widely relied upon in either clinical or research settings due to limited validation. In this study, we create a high-performance seizure-detection approach, validated in multiple data sets, with the intention that such a system could be available to users for multiple purposes. Methods We introduce a generalized linear model trained on 141 EEG signal features for classification of seizures in continuous EEG for two data sets. In the first (Focal Epilepsy) data set consisting of 16 rats with focal epilepsy, we collected 1012 spontaneous seizures over 3 months of 24/7 recording. We trained a generalized linear model on the 141 features representing 20 feature classes, including univariate and multivariate, linear and nonlinear, time, and frequency domains. We tested performance on multiple hold-out test data sets. We then used the trained model in a second (Multifocal Epilepsy) data set consisting of 96 rats with 2883 spontaneous multifocal seizures. Results From the Focal Epilepsy data set, we built a pooled classifier with an Area Under the Receiver Operating Characteristic (AUROC) of 0.995 and leave-one-out classifiers with an AUROC of 0.962. We validated our method within the independently constructed Multifocal Epilepsy data set, resulting in a pooled AUROC of 0.963. We separately validated a model trained exclusively on the Focal Epilepsy data set and tested on the held-out Multifocal Epilepsy data set with an AUROC of 0.890. Latency to detection was under 5 seconds for over 80% of seizures and under 12 seconds for over 99% of seizures. Significance This method achieves the highest performance published for seizure detection on multiple independent data sets. This method of seizure detection can be applied to automated EEG analysis pipelines as well as closed loop interventional approaches, and can be especially useful in the setting of research using animals in which there is an increased need for standardization and high-throughput analysis of large number of seizures

    Analyzing Predictive Features of Epileptic Seizures in Human Intracranial EEG Recordings

    Get PDF
    Epilepsiahooge on üritatud ennustada mitmeid aastakümneid, kasutades tipptasemel tunnuseid ja masinõppemeetodeid. Kui õnnestuks välja töötada süsteem, mis reaalajas hoiatab patsiente eelseisvate hoogude eest, parandaks see oluliselt patsientide elukvaliteeti. Epilepsiahoogude ennustamine koosneb kahest etapist: tunnuste ekstraheerimine ning näidiste klassifitseerimine hoogudevaheliseks (tavaline ajaperiood) või hooeelseks. Enamasti kasutatakse EEG andmeid, sest EEG on odav, transporditav ning väljendab muutusi ajudünaamikas kõige täpsemini. Kui enamik uuringuid keskendub uudsete tunnuste ekstraheerimisele või uute klassifitseerimisalgoritmide rakendamisele, siis antud bakalaureusetöö eesmärk oli välja selgitada, missugused kasutatavad tunnused on kõige olulisemad. Kui on teada, missugused tunnused kõige rohkem mõjutavad ennustamistulemusi, aitab see paremini aru saada nii klassifitseerimisalgoritmide tööprotsessist kui ka ajudünaamikast ning vähendada tunnuste hulka, mida masinõppes kasutada, muutes seega klassifitseerimisprotsessi efektiivsemaks. Bakalaureusetöös kasutati kahe patsiendi intrakraniaalseid EEG andmeid ning kolme algoritmi scikit-learn teegist, mida kombineeriti meetoditega, mis hindavad tunnuste mõju. Saadud ennustustäpsused olid mõõdukalt head kuni suurepärased ning võimaldasid seega analüüsida tunnuste mõju usaldusväärselt iga klassifitseerimisalgoritmi kohta.Epilepsy seizure prediction is a challenge that scientists have tried to overcome throughout many decades, using different state-of-the-art features and machine learning methods. If a forecasting system could predict and warn epilepsy patients of impeding seizures in real time, it would greatly improve their quality of life. Seizure prediction consists of two stages: feature extraction from the data and sample classification to interictal (non-seizure) or preictal (preseizure) state. EEG data is commonly used, as it is inexpensive, portable and it most clearly reflects the changes in the brain’s dynamics. While most studies focus on extracting novel features or using new classifiers, this Thesis focuses on ascertaining the most significant features among some that are commonly used in seizure prediction. Knowing which features influence the prediction results the most, helps to understand the inner workings of both the classifiers and the brain activity and to reduce the feature set in future research, making the classification process more effective. Intracranial EEG data of two patients was used in this Thesis with three classifiers from the scikit-learn library, which were combined with methods for evaluating feature importance. Moderately good to excellent prediction accuracies were achieved with these methods, which allowed to reliably analyze the feature importance results of the different classifiers

    時間周波数領域でのてんかん脳波識別に関する研究 ‐平均二乗根に基づく特徴抽出に着目して‐

    Get PDF
    Epilepsy affects over 50 million people on an average yearly world wide. Epileptic Seizure is a generalised term which has broad classification depending on the reasons behind its occurrence. Parvez et al. when applied feature instantaneous bandwidth B2AM and time averaged bandwidth B2FM for classification of interictal and ictal on Freiburg data base, the result dipped low to 77.90% for frontal lobe whereas it was 80.20% for temporal lobe compare to the 98.50% of classification accuracy achieved on Bonn dataset with same feature for classification of ictal against interictal. We found reasons behind such low results are, first Parvez et al. has used first IMF of EMD for feature computation which mostly noised induce. Secondly, they used same kernel parameters of SVM as Bajaj et al. which they must have optimised with different dataset. But the most important reason we found is that two signals s1 and s2 can have same instantaneous bandwidth. Therefore, the motivation of the dissertation is to address the drawback of feature instantaneous bandwidth by new feature with objective of achieving comparable classification accuracy. In this work, we have classified ictal from healthy nonseizure interictal successfully first by using RMS frequency and another feature from Hilbert marginal spectrum then with its parameters ratio. RMS frequency is the square root of sum of square bandwidth and square of center frequency. Its contributing parameters ratio is ratio of center frequency square to square bandwidth. We have also used dominant frequency and its parameters ratio for the same purpose. Dominant frequency have same physical relevance as RMS frequency but different by definition, i.e. square root of sum of square of instantaneous band- width and square of instantaneous frequency. Third feature that we have used is by exploiting the equivalence of RMS frequency and dominant frequency (DF) to define root mean instantaneous frequency square (RMIFS) as square root of sum of time averaged bandwidth square and center frequency square. These features are average measures which shows good discrimination power in classifying ictal from interictal using SVM. These features, fr and fd also have an advantage of overcoming the draw back of square bandwidth and instantaneous bandwidth. RMS frequency that we have used in this work is different from generic root mean square analysis. We have used an adaptive thresholding algorithm to address the issue of false positive. It was able to increase the specificity by average of 5.9% on average consequently increasing the accuracy. Then we have applied morphological component analysis (MCA) with the fractional contribution of dominant frequency and other rest of the features like band- width parameter’s contribution and RMIFS frequency and its parameters and their ratio. With the results from proposed features, we validated our claim to overcome the drawback of instantaneous bandwidth and square bandwidth.九州工業大学博士学位論文 学位記番号:生工博甲第323号 学位授与年月日:平成30年6月28日1 Introduction|2 Empirical Mode Decomposition|3 Root Mean Square Frequency|4 Root Mean Instantaneous Frequency Square|5 Morphological Component Analysis|6 Conclusion九州工業大学平成30年
    corecore