11,685 research outputs found

    Traction axial flux motor-generator for hybrid electric bus application

    Get PDF
    Tato dizertační práce se zabývá návrhem původního motor-generátoru s axiálním tokem a buzením permanetními magnety, zkonstruovaným specificky pro hybridní elektrický autobus. Návrhové zadání pro tento stroj přineslo požadavky, které vedly k této unikátní topologii tak, aby byl dosažen výkon, účinnost a rozměry stroje. Tato partikulární topologie motor-generátoru s axiálním tokem je výsledkem literární rešerše, kterou následoval výběr koncepce stroje s představeným návrhem jako výsledkem těchto procesů. Přístup k návrhu stroje s axiálním tokem sledoval „multi-fyzikální“ koncepci, která pracuje s návrhem elektromagnetickým, tepelným, mechanickým, včetně návrhu řízení, v jedné iteraci. Tím je v konečném návrhu zajištěna rovnováha mezi těmito inženýrskými disciplínami. Pro samotný návrh stroje byla vyvinuta sada výpočtových a analytických nástrojů, které byly podloženy metodou konečných prvků tak, aby samotný návrh stroje byl přesnější a spolehlivější. Modelování somtného elektrického stroje a celého pohonu poskytlo představu o výkonnosti a účinnosti celého subsytému v rozmanitých operačních podmínkách. Rovněž poukázal na optimizační potenciál pro návrh řízení subsystému ve smyslu maximalizace účinnosti celého pohonu. Bylo postaveno několik prototypů tohoto stroje, které prošly intensivním testováním jak na úrovni sybsytému, tak systému. Samotné výsledky testů jsou diskutovány a porovnány s analytickými výpočty parametrů stroje. Poznatky získané z prvního prototypu stroje pak sloužily k představení možností, jak zjednodušit výrobu a montáž stroje v příští generaci. Tato práce zaznamenává jednotlivé kroky během všech fází vývoje elektrického stroje s axiálním tokem, počínaje výběrem konceptu stroje, konče sumarizací zkušeností získaných z první generace prototypu tohoto stroje.This thesis deals with a design of a novel Axial-Flux Permanent Magnet Motor-Generator for a hybrid electric bus application. Thus, the design specification represents a set of requirements, which leads toward a concept of a unique topology meeting performance, efficiency and dimensional targets. The particular topology of the Axial-Flux Permanent Magnet Motor-Generator discussed in this work is an outcome of deep literature survey, followed by the concept selection stage with the layout of the machine as an outcome of this processes. The design approach behind this so-called Spoke Axial-Flux Machine follows an idea of multiphysics iterations, including electromagnetic, thermal, mechanical and controls design. Such a process behind the eventually proposed design ensured a right balance in between all of these engineering disciplines. A set of bespoke design and analysis tools was developed for that reason, and was backed up by extensive use of Finite-Element Analysis and Computational Fluid Dynamics. Therefore, the actual machine design gained higher level of confidence and fidelity. Modelling of the machine and its drive provided understanding of performance and efficiency of the whole subsystem at various operational conditions. Moreover, it has illustrated an optimization potential for the controls design, so that efficiency of the machine and power electronics might be maximized. Several prototypes of this machine have been built and passed through extensive testing both on the subsystem and system level. Actual test results are discussed, and compared to analytical predictions in terms of the machine's parameters. As a lesson learned from the first prototype of this machine, a set of redesign proposals aiming for simplification of manufacturing and assembly processes, are introduced. This work records steps behind all phases of development of the Axial Flux Machine from a basic idea as an outcome of concept selection stage, up to testing and wrap-up of experience gained from the first generation of the machine.

    Mathematical Models for the Design of Electrical Machines

    Get PDF
    This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations

    Overview of Sensitivity Analysis Methods Capabilities for Traction AC Machines in Electrified Vehicles

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.A robust design in electrified powertrains substantially helps to enhance the vehicle's overall efficiency. Robustness analyses come with complexity and computational costs at the vehicle level. The use of sensitivity analysis (SA) methods in the design phase has gained popularity in recent years to improve the performance of road vehicles while optimizing the resources, reducing the costs, and shortening the development time. Designers have started to utilize the SA methods to explore: i) how the component and vehicle level design options affect the main outputs i.e. energy efficiency and energy consumption; ii) observing sub-dependent parameters, which might be influenced by the variation of the targeted controllable (i.e. magnet thickness) and uncontrollable (i.e. magnet temperature) variables, in nonlinear dynamic systems; and iii) evaluating the interactions, of both dependent, and sub-dependent controllable/uncontrollable variables, under transient conditions. Hence the aim of this study is to succinctly review recent utilization of SA methods in the design of AC electric machines (EM)s used in vehicle powertrains, to evaluate and discuss the findings presented in recent research papers while summarizing the current state of knowledge. By systematically reviewing the literature on applied SAs in electrified powertrains, we offer a bibliometric analysis of the trends of application-oriented SA studies in the last and next decades. Finally, a numerical-based case study on a third-generation TOYOTA Prius EM will be given, to verify the SA-related findings of this article, alongside future works recommendations.Peer reviewe

    Modelling and control techniques for multiphase electric drives: a phase variable approach

    Get PDF
    Multiphase electric drives are today one of the most relevant research topics for the electrical engineering scientific community, thanks to the many advantages they offer over standard three-phase solutions (e.g., power segmentation, fault-tolerance, optimized performances, torque/power sharing strategies, etc...). They are considered promising solutions in many application areas, like industry, traction and renewable energy integration, and especially in presence of high-power or high-reliability requirements. However, contrarily to the three-phase counterparts, multiphase drives can assume a wider variety of different configurations, concerning both the electrical machine (e.g., symmetrical/asymmetrical windings disposition, concentrated/distributed windings, etc...) and the overall drive topology (e.g., single-star configuration, multiple-star configuration, open-end windings, etc…). This aspect, together with the higher number of variables of the system, can make their analysis and control more challenging, especially when dealing with reconfigurable systems (e.g., in post-fault scenarios). This Ph.D. thesis is focused on the mathematical modelling and on the control of multiphase electric drives. The aim of this research is to develop a generalized model-based approach that can be used in multiple configurations and scenarios, requiring minimal reconfigurations to deal with different machine designs and/or different converter topologies, and suitable both in healthy and in faulty operating conditions. Standard field-oriented approaches for the analysis and control of multiphase drives, directly derived as extensions of the three-phase equivalents, despite being relatively easy and convenient solutions to deal with symmetrical machines, may suffer some hurdles when applied to some asymmetrical configurations, including post-fault layouts. To address these issues, a different approach, completely derived in the phase variable domain, is here developed. The method does not require any vector space decomposition or rotational transformation but instead explicitly considers the mathematical properties of the multiphase machine and the effects of the drive topology (which typically introduces some constraints on the system variables). In this thesis work, the proposed approach is particularized for multiphase permanent magnet synchronous machines and for multiphase synchronous reluctance machines. All the results are obtained through rigorous mathematical derivations, and are supported and validated by both numerical analysis and experimental tests. As proven considering many different configurations and scenarios, the main benefits of the proposed methodology are its generality and flexibility, which make it a viable alternative to standard modelling and control algorithms

    Development of a multidisciplinary and optimized design methodology for surface permanent magnets synchronous machines

    Get PDF
    Electric energy is one of the supports of modern civilization. In the actual context, the electrical machines are of capital importance since most of power plants, from nuclear plants to wind turbines, need an electrical machine working as a generator. Moreover, it is estimated that nowadays the 65% of the total energy supplied by the grid is consumed by electric motors working in an industrial environment. Electrical machines are complex systems where a great amount of physical phenomena are produced simultaneously; that is why a proper design requires detailed multidisciplinary models. However, most of the design methodologies and tools are only focused on machine electromagnetic performance in order to achieve power, efficiency and mass to volume ratio goals, performing an adequate more than an optimized design. In the best cases, the features related with other physical domains are taken into account through figures or merit or rules of the thumb based on designer particular experience (e.g. thermal sizing); or even they are treated as an afterthought if needed (typical case of the machine vibro-acoustic performance). These approaches are only suitable for very well-known applications where machine features are perfectly known and characterized. However, these methodologies are unsystematic by nature so they have serious difficulties in order to extrapolate the obtained results to a new set of specifications or to more challenging applications where not only electromagnetic criteria but other physical domains, such as vibro-acoustic, should be taken into account. More precisely, since the advent of neodymium iron boron (NdFeB) magnets, permanent magnets synchronous machines (PMSM) has become a suitable option both in industrial and domestic applications such as aircraft industry, elevation, electric vehicle or power generation. Due to their attractive features (e.g. high efficiency, compactness and power density) PMSMs are an emerging technology and an attractive field of study, as it is highlighted by the great amount of publications devoted to that topic in the last years. Therefore, the thesis main goal is the development of a pioneering PMSM design methodology based on a holistic, multidisciplinary and optimized approach. Moreover, this proposed methodology takes into account not only the electromagnetic and thermal conventional aspects but also the machine vibro-acoustic behaviour. In order to fulfil this aim, a complete multiphysical analytical model has been carried out, including a detailed study of the electromagnetic, thermal and vibro-acoustics PMSM features, paying a special attention to these physical domains interactions. The developed models have been used in order to implement a PMSM design optimized methodology based on an innovative heuristic algorithm labelled Direct Multisearch (DMS). In order to validate the physical models, a 75 kW PMSM prototype (IkerMAQ) has been designed and built. A huge amount of tests were carried out and the analytical models have been exhaustively validated, including electromagnetic, thermal and vibro-acoustic domains

    Comparison of three analytical methods for the precise calculation of cogging torque and torque ripple in axial flux PM machines

    Get PDF
    A comparison between different analytical and finite-element (FE) tools for the computation of cogging torque and torque ripple in axial flux permanent-magnet synchronous machines is made. 2D and 3D FE models are the most accurate for the computation of cogging torque and torque ripple. However, they are too time consuming to be used for optimization studies. Therefore, analytical tools are also used to obtain the cogging torque and torque ripple. In this paper, three types of analytical models are considered. They are all based on dividing the machine into many slices in the radial direction. One model computes the lateral force based on the magnetic field distribution in the air gap area. Another model is based on conformal mapping and uses complex Schwarz Christoffel (SC) transformations. The last model is based on the subdomain technique, which divides the studied geometry into a number of separate domains. The different types of models are compared for different slot openings and permanent-magnet widths. One of the main conclusions is that the subdomain model is best suited to compute the cogging torque and torque ripple with a much higher accuracy than the SC model

    Convergence analysis of the fixed-point method with the hybrid analytical modeling for 2-D nonlinear magnetostatic problems

    Get PDF
    This paper presents the convergence analysis of the fixed-point method (FPM) to model the nonlinear magnetic characteristics of a 2-D magnetostatic problem. In this study, FPM is used as the iterative nonlinear solver of the hybrid analytical modeling (HAM) technique for the accurate computation of the magnetic field distribution. The benchmark consists of a stator with excitation windings, an airgap, and a slotless mover. The relative errors between two successive iterations are calculated using different error estimators: the attraction force on the mover, the Fourier coefficients defined in the airgap, the magnetic flux density, and the magnetic scalar potential distributions. The effect of the number of mesh elements and harmonics on the accuracy and computational cost of the model is investigated for different levels of magnetic saturation. It is observed that the maximum rate of change in the relative difference of attraction force during the iterations is found to be 0.52 under the magnetic saturation. In addition, the absolute error of the attraction force between the developed hybrid model with FPM and the finite element method (FEM) is achieved to be 0.18%, while HAM has approximately three times less number of degrees-of-freedom compared to FEM

    Recyclable Electrical Machine Designs with 3D Flux and Non-Traditional Materials

    Get PDF
    corecore