12,522 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made both neurobiologically more plausible and computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, for example, fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of recurrent neural networks may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Recognition Situations Using Extended Dempster-Shafer Theory

    Get PDF
    Weiser’s [111] vision of pervasive computing describes a world where technology seamlessly integrates into the environment, automatically responding to peoples’ needs. Underpinning this vision is the ability of systems to automatically track the situation of a person. The task of situation recognition is critical and complex: noisy and unreliable sensor data, dynamic situations, unpredictable human behaviour and changes in the environment all contribute to the complexity. No single recognition technique is suitable in all environments. Factors such as availability of training data, ability to deal with uncertain information and transparency to the user will determine which technique to use in any particular environment. In this thesis, we propose the use of Dempster-Shafer theory as a theoretically sound basis for situation recognition - an approach that can reason with uncertainty, but which does not rely on training data. We use existing operations from Dempster-Shafer theory and create new operations to establish an evidence decision network. The network is used to generate and assess situation beliefs based on processed sensor data for an environment. We also define two specific extensions to Dempster-Shafer theory to enhance the knowledge that can be used for reasoning: 1) temporal knowledge about situation time patterns 2) quality of evidence sources (sensors) into the reasoning process. To validate the feasibility of our approach, this thesis creates evidence decision networks for two real-world data sets: a smart home data set and an officebased data set. We analyse situation recognition accuracy for each of the data sets, using the evidence decision networks with temporal/quality extensions. We also compare the evidence decision networks against two learning techniques: Naïve Bayes and J48 Decision Tree
    • …
    corecore