1,458 research outputs found

    HSMA: An O(N) electrostatics package implemented in LAMMPS

    Full text link
    We implement two recently developed fast Coulomb solvers, HSMA3D [J. Chem. Phys. 149 (8) (2018) 084111] and HSMA2D [J. Chem. Phys. 152 (13) (2020) 134109], into a new user package HSMA for molecular dynamics simulation engine LAMMPS. The HSMA package is designed for efficient and accurate modeling of electrostatic interactions in 3D and 2D periodic systems with dielectric effects at the O(N) cost. The implementation is hybrid MPI and OpenMP parallelized and compatible with existing LAMMPS functionalities. The vectorization technique following AVX512 instructions is adopted for acceleration. To establish the validity of our implementation, we have presented extensive comparisons to the widely used particle-particle particle-mesh (PPPM) algorithm in LAMMPS and other dielectric solvers. With the proper choice of algorithm parameters and parallelization setup, the package enables calculations of electrostatic interactions that outperform the standard PPPM in speed for a wide range of particle numbers

    Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water

    Full text link
    Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to three simple molecular systems that exhibit different aspects of the failure of a naive application of spherical truncations -- water confined between hydrophobic walls, water confined between atomically-corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.Comment: Submitted to PNA

    Machine Learning-Driven Surrogate Models for Electrolytes

    Get PDF
    We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts for the effect of the physical properties of ionic liquids (ILs) on lithium dendrite growth. Our simulations show that the size asymmetry between the cation and anion, the dielectric constant, and the volume fraction of ILs are critical factors to significantly suppress the dendrite growth, primarily due to substantial changes in electric-field screening. Specifically, the volume fraction of ILs has the optimal value for dendrite suppression. The present simulation method indicates potential challenges for the model extension to macroscopic systems. Therefore, we also develop ensemble neural networks (ENNs) in machine learning methods with training datasets derived from the MC simulations by considering the input descriptors with the dielectric constant, the model parameter for the fractal dimension of the dendrite, the volume fraction of ILs, and the applied voltage. Our ENNs can predict the highly nonmonotonic trend of the simulation results from only one-tenth of simulation runs, thus significantly reducing the required computation time. To further examine the efficacy of our new ENN methods in practical applications, we apply ENNs to the study of the dielectric constants of salt-free and salt-doped solvents. Seven common solvents and NaCl solutions with various salt concentrations are considered examples. Despite the significant 50-time reduction in the number of training data, the predictions of the ENNs with batch normalization or bootstrap aggregating are largely consistent with the ground truths, tracing the optimal values out of statistically noisy data. Furthermore, we investigate the phase behaviors of cellulose and ILs mixtures by combining ENNs with unsupervised learning. As a result, K-means clustering and hierarchical clustering can automatically classify solubility phases and determine the boundaries of phases. Our work proves that machine learning could be a promising tool for studying soft matter systems

    Numerical study of density functional theory with mean spherical approximation for ionic condensation in highly charged confined electrolytes

    Get PDF
    We investigate numerically a Density Functional Theory (DFT) for strongly confined ionic solutions in the Canonical Ensemble by comparing predictions of ionic concentration profiles and pressure for the double-layer configuration to those obtained with Monte Carlo (MC) simulations and the simpler Poisson--Boltzmann (PB) approach. The DFT consists of a bulk (ion-ion) and an ion-solid part. The bulk part includes nonideal terms accounting for long-range electrostatic and short-range steric correlations between ions and is evaluated with the Mean Spherical Approximation and the Local Density Approximation. The ion-solid part treats the ion-solid interactions at the mean-field level through the solution of a Poisson problem. The main findings are that ionic concentration profiles are generally better described by PB than by DFT, although DFT captures the non-monotone co-ion profile missed by PB. Instead, DFT yields more accurate pressure predictions than PB, showing in particular that nonideal effects are important to describe highly confined ionic solutions. Finally, we present a numerical methodology capable of handling nonconvex minimization problems so as to explore DFT predictions when the reduced temperature falls below the critical temperature

    Dynamic simulations of many-body electrostatic self-assembly

    Get PDF
    Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarisability can influence the assembly process
    • …
    corecore