3,495 research outputs found

    Adversarial Network Bottleneck Features for Noise Robust Speaker Verification

    Full text link
    In this paper, we propose a noise robust bottleneck feature representation which is generated by an adversarial network (AN). The AN includes two cascade connected networks, an encoding network (EN) and a discriminative network (DN). Mel-frequency cepstral coefficients (MFCCs) of clean and noisy speech are used as input to the EN and the output of the EN is used as the noise robust feature. The EN and DN are trained in turn, namely, when training the DN, noise types are selected as the training labels and when training the EN, all labels are set as the same, i.e., the clean speech label, which aims to make the AN features invariant to noise and thus achieve noise robustness. We evaluate the performance of the proposed feature on a Gaussian Mixture Model-Universal Background Model based speaker verification system, and make comparison to MFCC features of speech enhanced by short-time spectral amplitude minimum mean square error (STSA-MMSE) and deep neural network-based speech enhancement (DNN-SE) methods. Experimental results on the RSR2015 database show that the proposed AN bottleneck feature (AN-BN) dramatically outperforms the STSA-MMSE and DNN-SE based MFCCs for different noise types and signal-to-noise ratios. Furthermore, the AN-BN feature is able to improve the speaker verification performance under the clean condition

    Improving Multi-Scale Aggregation Using Feature Pyramid Module for Robust Speaker Verification of Variable-Duration Utterances

    Full text link
    Currently, the most widely used approach for speaker verification is the deep speaker embedding learning. In this approach, we obtain a speaker embedding vector by pooling single-scale features that are extracted from the last layer of a speaker feature extractor. Multi-scale aggregation (MSA), which utilizes multi-scale features from different layers of the feature extractor, has recently been introduced and shows superior performance for variable-duration utterances. To increase the robustness dealing with utterances of arbitrary duration, this paper improves the MSA by using a feature pyramid module. The module enhances speaker-discriminative information of features from multiple layers via a top-down pathway and lateral connections. We extract speaker embeddings using the enhanced features that contain rich speaker information with different time scales. Experiments on the VoxCeleb dataset show that the proposed module improves previous MSA methods with a smaller number of parameters. It also achieves better performance than state-of-the-art approaches for both short and long utterances.Comment: Accepted to Interspeech 202

    Speaker recognition by means of restricted Boltzmann machine adaptation

    Get PDF
    Restricted Boltzmann Machines (RBMs) have shown success in speaker recognition. In this paper, RBMs are investigated in a framework comprising a universal model training and model adaptation. Taking advantage of RBM unsupervised learning algorithm, a global model is trained based on all available background data. This general speaker-independent model, referred to as URBM, is further adapted to the data of a specific speaker to build speaker-dependent model. In order to show its effectiveness, we have applied this framework to two different tasks. It has been used to discriminatively model target and impostor spectral features for classification. It has been also utilized to produce a vector-based representation for speakers. This vector-based representation, similar to i-vector, can be further used for speaker recognition using either cosine scoring or Probabilistic Linear Discriminant Analysis (PLDA). The evaluation is performed on the core test condition of the NIST SRE 2006 database.Peer ReviewedPostprint (author's final draft

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape

    Deep Speaker Feature Learning for Text-independent Speaker Verification

    Full text link
    Recently deep neural networks (DNNs) have been used to learn speaker features. However, the quality of the learned features is not sufficiently good, so a complex back-end model, either neural or probabilistic, has to be used to address the residual uncertainty when applied to speaker verification, just as with raw features. This paper presents a convolutional time-delay deep neural network structure (CT-DNN) for speaker feature learning. Our experimental results on the Fisher database demonstrated that this CT-DNN can produce high-quality speaker features: even with a single feature (0.3 seconds including the context), the EER can be as low as 7.68%. This effectively confirmed that the speaker trait is largely a deterministic short-time property rather than a long-time distributional pattern, and therefore can be extracted from just dozens of frames.Comment: deep neural networks, speaker verification, speaker featur

    Factorization of Discriminatively Trained i-vector Extractor for Speaker Recognition

    Full text link
    In this work, we continue in our research on i-vector extractor for speaker verification (SV) and we optimize its architecture for fast and effective discriminative training. We were motivated by computational and memory requirements caused by the large number of parameters of the original generative i-vector model. Our aim is to preserve the power of the original generative model, and at the same time focus the model towards extraction of speaker-related information. We show that it is possible to represent a standard generative i-vector extractor by a model with significantly less parameters and obtain similar performance on SV tasks. We can further refine this compact model by discriminative training and obtain i-vectors that lead to better performance on various SV benchmarks representing different acoustic domains.Comment: Submitted to Interspeech 2019, Graz, Austria. arXiv admin note: substantial text overlap with arXiv:1810.1318
    • …
    corecore