86,751 research outputs found

    Unsupervised Adaptation for High-Dimensional with Limited-Sample Data Classification Using Variational Autoencoder

    Get PDF
    High-dimensional with limited-sample size (HDLSS) datasets exhibit two critical problems: (1) Due to the insufficiently small-sample size, there is a lack of enough samples to build classification models. Classification models with a limited-sample may lead to overfitting and produce erroneous or meaningless results. (2) The 'curse of dimensionality' phenomena is often an obstacle to the use of many methods for solving the high-dimensional with limited-sample size problem and reduces classification accuracy. This study proposes an unsupervised framework for high-dimensional limited-sample size data classification using dimension reduction based on variational autoencoder (VAE). First, the deep learning method variational autoencoder is applied to project high-dimensional data onto lower-dimensional space. Then, clustering is applied to the obtained latent-space of VAE to find the data groups and classify input data. The method is validated by comparing the clustering results with actual labels using purity, rand index, and normalized mutual information. Moreover, to evaluate the proposed model strength, we analyzed 14 datasets from the Arizona State University Digital Repository. Also, an empirical comparison of dimensionality reduction techniques shown to conclude their applicability in the high-dimensional with limited-sample size data settings. Experimental results demonstrate that variational autoencoder can achieve more accuracy than traditional dimensionality reduction techniques in high-dimensional with limited-sample-size data analysis

    Evaluating Interactive Visualization of Multidimensional Data Projection with Feature Transformation

    Get PDF
    There has been extensive research on dimensionality reduction techniques. While these make it possible to present visually the high-dimensional data in 2D or 3D, it remains a challenge for users to make sense of such projected data. Recently, interactive techniques, such as Feature Transformation, have been introduced to address this. This paper describes a user study that was designed to understand how the feature transformation techniques affect user’s understanding of multi-dimensional data visualisation. It was compared with the traditional dimension reduction techniques, both unsupervised (PCA) and supervised (MCML). Thirty-one participants were recruited to detect visual clusters and outliers using visualisations produced by these techniques. Six different datasets with a range of dimensionality and data size were used in the experiment. Five of these are benchmark datasets, which makes it possible to compare with other studies using the same datasets. Both task accuracy and completion time were recorded for comparison. The results show that there is a strong case for the feature transformation technique. Participants performed best with the visualisations produced with high-level feature transformation, in terms of both accuracy and completion time. The improvements over other techniques are substantial, particularly in the case of the accuracy of the clustering task. However, visualising data with very high dimensionality (i.e., greater than 100 dimensions) remains a challenge

    Evaluating interactive visualization of multidimensional data projection with feature transformation

    Get PDF
    There has been extensive research on dimensionality reduction techniques. While these make it possible to present visually the high-dimensional data in 2D or 3D, it remains a challenge for users to make sense of such projected data. Recently, interactive techniques, such as Feature Transformation, have been introduced to address this. This paper describes an user study that was designed to understand how the feature transformation techniques affect user’s understanding of multi-dimensional data visualisation. It was compared with the traditional dimension reduction techniques, both unsupervised (PCA) and supervised (MCML). Thirty-one participants were recruited to detect visually clusters and outliers using visualisations produced by these techniques. Six different datasets with a range of dimensionality and data size were used in the experiment. Five of these are benchmark datasets, which makes it possible to compare with other studies using the same datasets. Both task accuracy and completion time were recorded for comparison. The results showthat there is a strong case for the feature transformation technique. Participants performed best with the visualisations produced with high-level feature transformation, in terms of both accuracy and completion time. The improvements over other techniques are substantial, particularly in the case of the accuracy of the clustering task. However, visualising data with very high dimensionality (i.e., greater than 100 dimensions) remains a challenge

    Training Process Reduction Based On Potential Weights Linear Analysis To Accelarate Back Propagation Network

    Get PDF
    Learning is the important property of Back Propagation Network (BPN) and finding the suitable weights and thresholds during training in order to improve training time as well as achieve high accuracy. Currently, data pre-processing such as dimension reduction input values and pre-training are the contributing factors in developing efficient techniques for reducing training time with high accuracy and initialization of the weights is the important issue which is random and creates paradox, and leads to low accuracy with high training time. One good data preprocessing technique for accelerating BPN classification is dimension reduction technique but it has problem of missing data. In this paper, we study current pre-training techniques and new preprocessing technique called Potential Weight Linear Analysis (PWLA) which combines normalization, dimension reduction input values and pre-training. In PWLA, the first data preprocessing is performed for generating normalized input values and then applying them by pre-training technique in order to obtain the potential weights. After these phases, dimension of input values matrix will be reduced by using real potential weights. For experiment results XOR problem and three datasets, which are SPECT Heart, SPECTF Heart and Liver disorders (BUPA) will be evaluated. Our results, however, will show that the new technique of PWLA will change BPN to new Supervised Multi Layer Feed Forward Neural Network (SMFFNN) model with high accuracy in one epoch without training cycle. Also PWLA will be able to have power of non linear supervised and unsupervised dimension reduction property for applying by other supervised multi layer feed forward neural network model in future work.Comment: 11 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.42

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads
    corecore