55 research outputs found

    Challenges in flexible microsystem manufacturing : fabrication, robotic assembly, control, and packaging.

    Get PDF
    Microsystems have been investigated with renewed interest for the last three decades because of the emerging development of microelectromechanical system (MEMS) technology and the advancement of nanotechnology. The applications of microrobots and distributed sensors have the potential to revolutionize micro and nano manufacturing and have other important health applications for drug delivery and minimal invasive surgery. A class of microrobots studied in this thesis, such as the Solid Articulated Four Axis Microrobot (sAFAM) are driven by MEMS actuators, transmissions, and end-effectors realized by 3-Dimensional MEMS assembly. Another class of microrobots studied here, like those competing in the annual IEEE Mobile Microrobot Challenge event (MMC) are untethered and driven by external fields, such as magnetic fields generated by a focused permanent magnet. A third class of microsystems studied in this thesis includes distributed MEMS pressure sensors for robotic skin applications that are manufactured in the cleanroom and packaged in our lab. In this thesis, we discuss typical challenges associated with the fabrication, robotic assembly and packaging of these microsystems. For sAFAM we discuss challenges arising from pick and place manipulation under microscopic closed-loop control, as well as bonding and attachment of silicon MEMS microparts. For MMC, we discuss challenges arising from cooperative manipulation of microparts that advance the capabilities of magnetic micro-agents. Custom microrobotic hardware configured and demonstrated during this research (such as the NeXus microassembly station) include micro-positioners, microscopes, and controllers driven via LabVIEW. Finally, we also discuss challenges arising in distributed sensor manufacturing. We describe sensor fabrication steps using clean-room techniques on Kapton flexible substrates, and present results of lamination, interconnection and testing of such sensors are presented

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Microrobots for wafer scale microfactory: design fabrication integration and control.

    Get PDF
    Future assembly technologies will involve higher automation levels, in order to satisfy increased micro scale or nano scale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to micro-electronics and MEMS industries, but less so in nanotechnology. With the bloom of nanotechnology ever since the 1990s, newly designed products with new materials, coatings and nanoparticles are gradually entering everyone’s life, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than with top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated to top-down manipulation with the required precision. However, the bottom-up manufacturing methods have certain limitations, such as components need to have pre-define shapes and surface coatings, and the number of assembly components is limited to very few. For example, in the case of self-assembly of nano-cubes with origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nano scale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nano positioners. To fulfill the microfactory vision, numerous challenges related to design, power, control and nanoscale task completion by these microrobots must be overcome. In this work, we study three types of microrobots for the microfactory: a world’s first laser-driven micrometer-size locomotor called ChevBot,a stationary millimeter-size robotic arm, called Solid Articulated Four Axes Microrobot (sAFAM), and a light-powered centimeter-size crawler microrobot called SolarPede. The ChevBot can perform autonomous navigation and positioning on a dry surface with the guidance of a laser beam. The sAFAM has been designed to perform nano positioning in four degrees of freedom, and nanoscale tasks such as indentation, and manipulation. And the SolarPede serves as a mobile workspace or transporter in the microfactory environment

    Design of high-speed and low-power finite-word-length PID controllers.

    No full text
    International audienceASIC or FPGA implementation of a finite word-length PID controller requires a double expertise : in control system and hardware design. In this paper, we only focus on the hardware side of the problem. We show how to design configurable fixed-point PIDs to satisfy application srequiring minimal power consumption, or high control-rate, or both together. As multiply operation is the engine of PID, we experienced three algorithms : Booth, modified Booth, and a new recursive multi-bit multiplication algorithm. This later enables the construction of finely grained PID structures with bit-velvel and unit-time precsion. Such a feature permits to tailor the PID to the desired performance and power budget. All PIDs are emplemented at register-transfer-level (RTL) level as technology-independent reusable IP-cores. They are reconfigurable according to two compile-time constants : set-point word-length and latency. To make PID design easily reproducible, all necessary implementation details are provided and discussed

    Computer Vision Measurements for Automated Microrobotic Paper Fiber Studies

    Get PDF
    The mechanical characterization of paper fibers and paper fiber bonds determines the key parameters affecting the mechanical properties of paper. Although bulk measurements from test sheets can give average values, they do not yield any real fiber-level data. The current, state-of-the-art methods for fiberlevel measurements are slow and laborious, requiring delicate manual handling of microscopic samples. There are commercial microrobotic actuators that allow automated or tele-operated manipulation of microscopic objects such as fibers, but it is challenging to acquire the data needed to guide such demanding manipulation. This thesis presents a solution to the illumination problem and computer vision algorithms for obtaining the required data. The solutions are designed for a microrobotic platform that comprises actuators for manipulating the fibers and one or two microscope cameras for visual feedback.The algorithms have been developed both for wet fibers, which can be treated as 2D objects, and for dry fibers and fiber bonds, which are treated as 3D objects. The major innovations in the algorithms are the rules for the micromanipulation of the curly fiber strands and the automated 3D measurements of microscale objects with random geometries. The solutions are validated by imaging and manipulation experiments with wet and dry paper fibers and dry paper fiber bonds. In the imaging experiments, the results are compared with the reference data obtained either from an experienced human or another imaging device. The results show that these solutions provide morphological data about the fibers which is accurate and precise enough to enable automated fiber manipulation. Although this thesis is focused on the manipulation of paper fibers and paper fiber bonds, both the illumination solution and the computer vision algorithms are applicable to other types of fibrous materials

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    Design, evaluation, and control of nexus: a multiscale additive manufacturing platform with integrated 3D printing and robotic assembly.

    Get PDF
    Additive manufacturing (AM) technology is an emerging approach to creating three-dimensional (3D) objects and has seen numerous applications in medical implants, transportation, aerospace, energy, consumer products, etc. Compared with manufacturing by forming and machining, additive manufacturing techniques provide more rapid, economical, efficient, reliable, and complex manufacturing processes. However, additive manufacturing also has limitations on print strength and dimensional tolerance, while traditional additive manufacturing hardware platforms for 3D printing have limited flexibility. In particular, part geometry and materials are limited to most 3D printing hardware. In addition, for multiscale and complex products, samples must be printed, fabricated, and transferred among different additive manufacturing platforms in different locations, which leads to high cost, long process time, and low yield of products. This thesis investigates methods to design, evaluate, and control the NeXus, which is a novel custom robotic platform for multiscale additive manufacturing with integrated 3D printing and robotic assembly. NeXus can be used to prototype miniature devices and systems, such as wearable MEMS sensor fabrics, microrobots for wafer-scale microfactories, tactile robot skins, next generation energy storage (solar cells), nanostructure plasmonic devices, and biosensors. The NeXus has the flexibility to fixture, position, transport, and assemble components across a wide spectrum of length scales (Macro-Meso-Micro-Nano, 1m to 100nm) and provides unparalleled additive process capabilities such as 3D printing through both aerosol jetting and ultrasonic bonding and forming, thin-film photonic sintering, fiber loom weaving, and in-situ Micro-Electro-Mechanical System (MEMS) packaging and interconnect formation. The NeXus system has a footprint of around 4m x 3.5m x 2.4m (X-Y-Z) and includes two industrial robotic arms, precision positioners, multiple manipulation tools, and additive manufacturing processes and packaging capabilities. The design of the NeXus platform adopted the Lean Robotic Micromanufacturing (LRM) design principles and simulation tools to mitigate development risks. The NeXus has more than 50 degrees of freedom (DOF) from different instruments, precise evaluation of the custom robots and positioners is indispensable before employing them in complex and multiscale applications. The integration and control of multi-functional instruments is also a challenge in the NeXus system due to different communication protocols and compatibility. Thus, the NeXus system is controlled by National Instruments (NI) LabVIEW real-time operating system (RTOS) with NI PXI controller and a LabVIEW State Machine User Interface (SMUI) and was programmed considering the synchronization of various instruments and sequencing of additive manufacturing processes for different tasks. The operation sequences of each robot along with relevant tools must be organized in safe mode to avoid crashes and damage to tools during robots’ motions. This thesis also describes two demonstrators that are realized by the NeXus system in detail: skin tactile sensor arrays and electronic textiles. The fabrication process of the skin tactile sensor uses the automated manufacturing line in the NeXus with pattern design, precise calibration, synchronization of an Aerosol Jet printer, and a custom positioner. The fabrication process for electronic textiles is a combination of MEMS fabrication techniques in the cleanroom and the collaboration of multiple NeXus robots including two industrial robotic arms and a custom high-precision positioner for the deterministic alignment process

    Automatic Microassembly System for tissue engineering- Assisted with top-view and force control

    Get PDF
    Master'sMASTER OF ENGINEERIN

    The development of optical nanomachines for studying molecules : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Chapter 3 is ©2020 IEEE. Accepted manuscript is reprinted, with permission, from 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Chapter 5 is ©2022 IEEE. Accepted manuscript is reprinted, with permission, from 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS).Optical tweezers have been used for a number of applications since their invention by Arthur Ashkin in 1986, and are particularly useful for biological and biophysical studies due to their exceptionally high spatial and force-based resolution. The same intense laser focus that allows light to be used as a tool for micro-nanoscale manipulation also has the potential to damage the objects being studied, and the extremely high force resolution is coupled with the limitation of very low forces. There is potential to overcome these drawbacks of optical manipulation through making use of another laser based technique: two-photon absorption polymerisation (TPAP). This thesis has brought these together to demonstrate the uses of optical nanomachines as helpful tools for optical tweezer studies. The project was highly interdisciplinary, concerning the intersection of optical trapping, 3D micromachine design and development, and DNA stretching. The thesis was based around the strategy of first developing microrobots and demonstrating their manipulation using optical tweezers, then adjusting the design for specific applications. Microlevers were developed for lever-assisted DNA stretching and amplification of optical forces. The influence of design features and TPAP parameters on microlever functionality was investigated; particularly the influence of overlapping area and presence of supports, and the effects of differently shaped "trapping handles". These features were important as lever functionality was tested in solutions of different ionic strength, and stable trapping of the levers was required for force amplification. DNA stretching was chosen as a target application for distanced-application of optical forces due to its status as a well-known and characterised example of single-molecule studies with optical tweezers. Amplification of optical forces was also seen as an application that could demonstrate the utility of optical micromachines, and microlevers with a 2:1 lever arm ratio were developed to produce consistent, two-fold amplification of optical forces, in a first for unsupported, pin-jointed optical microrobotics. It is hoped that in the future fully-remote, micromachine-assisted studies will extend optical tweezer studies of laser-sensitive subjects, as well as increasing the forces that can be applied, and the results obtained in this thesis are encouraging. All in all, the thesis confirms the potential of optical micromachines for aiding studies using optical tweezers, and demonstrates concrete progress in both design and application

    FPGA in image processing supported by IOPT-Flow

    Get PDF
    Image processing is widely used in the most diverse industries. One of the tools widely used to perform image processing is the OpenCV library. Although the implementation of image processing algorithms can be made in software, it is also possible to implement image processing algorithms in hardware. In some cases, the execution time can be smaller than the execution time achieved in software. This work main goal is to evaluate the use of VHDL, DS-Pnets, and IOPT-Flow to develop image processing systems in hardware, in FPGA-based platforms. To enable it, a validation platform was developed. A set of image processing algorithms were specified, during this work, in VHDL and/or in DS-Pnets. These were validated using the IOPT-Flow validation tool and/or the Xilinx ISE Simulator. The automatic VHDL code generator from IOPT-Flow framework was used to translate DS-Pnet models into the implementation code. The FPGA-based implementations were compared with software implementations, supported by the OpenCV library. The created DS-Pnet models were added into a folder of the IOPT-Flow editor, to create an image processing library. It was possible to conclude that the DS-Pnets and their associated tools, IOPT-Flow tools, support the development of image processing systems. These tools, which simplify the development of image processing systems, are available online at http://gres.uninova.pt/iopt-flow/
    corecore