233 research outputs found

    Machine Learning Approaches for Automated Glaucoma Detection using Clinical Data and Optical Coherence Tomography Images

    Full text link
    Glaucoma is a multi-factorial, progressive blinding optic-neuropathy. A variety of factors, including genetics, vasculature, anatomy, and immune factors, are involved. Worldwide more than 80 million people are affected by glaucoma, and around 300,000 in Australia, where 50% remain undiagnosed. Untreated glaucoma can lead to blindness. Early detection by Artificial intelligence (AI) is crucial to accelerate the diagnosis process and can prevent further vision loss. Many proposed AI systems have shown promising performance for automated glaucoma detection using two-dimensional (2D) data. However, only a few studies had optimistic outcomes for glaucoma detection and staging. Moreover, the automated AI system still faces challenges in diagnosing at the clinicians’ level due to the lack of interpretability of the ML algorithms and integration of multiple clinical data. AI technology would be welcomed by doctors and patients if the "black box" notion is overcome by developing an explainable, transparent AI system with similar pathological markers used by clinicians as the sign of early detection and progression of glaucomatous damage. Therefore, the thesis aimed to develop a comprehensive AI model to detect and stage glaucoma by incorporating a variety of clinical data and utilising advanced data analysis and machine learning (ML) techniques. The research first focuses on optimising glaucoma diagnostic features by combining structural, functional, demographic, risk factor, and optical coherence tomography (OCT) features. The significant features were evaluated using statistical analysis and trained in ML algorithms to observe the detection performance. Three crucial structural ONH OCT features: cross-sectional 2D radial B-scan, 3D vascular angiography and temporal-superior-nasal-inferior-temporal (TSNIT) B-scan, were analysed and trained in explainable deep learning (DL) models for automated glaucoma prediction. The explanation behind the decision making of DL models were successfully demonstrated using the feature visualisation. The structural features or distinguished affected regions of TSNIT OCT scans were precisely localised for glaucoma patients. This is consistent with the concept of explainable DL, which refers to the idea of making the decision-making processes of DL models transparent and interpretable to humans. However, artifacts and speckle noise often result in misinterpretation of the TSNIT OCT scans. This research also developed an automated DL model to remove the artifacts and noise from the OCT scans, facilitating error-free retinal layers segmentation, accurate tissue thickness estimation and image interpretation. Moreover, to monitor and grade glaucoma severity, the visual field (VF) test is commonly followed by clinicians for treatment and management. Therefore, this research uses the functional features extracted from VF images to train ML algorithms for staging glaucoma from early to advanced/severe stages. Finally, the selected significant features were used to design and develop a comprehensive AI model to detect and grade glaucoma stages based on the data quantity and availability. In the first stage, a DL model was trained with TSNIT OCT scans, and its output was combined with significant structural and functional features and trained in ML models. The best-performed ML model achieved an area under the curve (AUC): 0.98, an accuracy of 97.2%, a sensitivity of 97.9%, and a specificity of 96.4% for detecting glaucoma. The model achieved an overall accuracy of 90.7% and an F1 score of 84.0% for classifying normal, early, moderate, and advanced-stage glaucoma. In conclusion, this thesis developed and proposed a comprehensive, evidence-based AI model that will solve the screening problem for large populations and relieve experts from manually analysing a slew of patient data and associated misinterpretation problems. Moreover, this thesis demonstrated three structural OCT features that could be added as excellent diagnostic markers for precise glaucoma diagnosis

    Accelerating precision ophthalmology: recent advances

    Get PDF
    Introduction: The future of ophthalmology is precision medicine. With a growing incidence of lifestyle-associated ophthalmic disease such as diabetic retinopathy, the use of technology has the potential to overcome the burden on clinical specialists. Advances in precision medicine will help improve diagnosis and better triage those with higher clinical need to the appropriate experts, as well as providing a more tailored approach to treatment that could help transform patient management. Areas covered: A detailed literature review was conducted using OVID Medline and PubMed databases to explore advances in precision medicine within the areas of retinal disease, glaucoma, cornea, cataracts and uveitis. Over the last three years [2019–2022] are explored, particularly discussing technological and genomic advances in screening, diagnosis, and management within these fields. Expert opinion: Artificial intelligence and its subspecialty deep learning provide the most substantial ways in which diagnosis and management of ocular diseases can be further developed within the advancing field of precision medicine. Future challenges include optimal training sets for algorithms and further developing pharmacogenetics in more specialized areas

    Machine Learning Techniques, Detection and Prediction of Glaucoma– A Systematic Review

    Get PDF
    Globally, glaucoma is the most common factor in both permanent blindness and impairment. However, the majority of patients are unaware they have the condition, and clinical practise continues to face difficulties in detecting glaucoma progression using current technology. An expert ophthalmologist examines the retinal portion of the eye to see how the glaucoma is progressing. This method is quite time-consuming, and doing it manually takes more time. Therefore, using deep learning and machine learning techniques, this problem can be resolved by automatically diagnosing glaucoma. This systematic review involved a comprehensive analysis of various automated glaucoma prediction and detection techniques. More than 100 articles on Machine learning (ML) techniques with understandable graph and tabular column are reviewed considering summery, method, objective, performance, advantages and disadvantages. In the ML techniques such as support vector machine (SVM), and K-means. Fuzzy c-means clustering algorithm are widely used in glaucoma detection and prediction. Through the systematic review, the most accurate technique to detect and predict glaucoma can be determined which can be utilized for future betterment

    UNRAVELLING DIABETIC RETINOPATHY THROUGH IMAGE PROCESSING, NEURAL NETWORKS AND FUZZY LOGIC – A REVIEW

    Get PDF
    One of the main causes of blindness is diabetic retinopathy (DR) and it may affect people of any ages. In these days, both young and old ages are affected by diabetes, and the di abetes is the main cause of DR. Hence, it is necessary to have an automated system with good accuracy and less computation time to diagnose and treat DR, and the automated system can simplify the work of ophthalmologists. The objective is to present an overview of various works recently in detecting and segmenting the various lesions of DR. Papers were categorized based on the diagnosing tools and the methods used for detecting early and advanced stage lesions. The early lesions of DR are microaneurysms, hemorrhages, exudates, and cotton wool spots and in the advanced stage, new and fragile blood vessels can be grown. Results have been evaluated in terms of sensitivity, specificity, accuracy and receiver operating characteristic curve. This paper analyzed the various steps and different algorithms used recently for the detection and classification of DR lesions. A comparison of performances has been made in terms of sensitivity, specificity, area under the curve, and accuracy. Suggestions, future workand the area to be improved were also discussed.Keywords: Diabetic retinopathy, Image processing, Morphological operations, Neural network, Fuzzy logic.Â

    The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases

    Get PDF
    : In recent years, the role of artificial intelligence (AI) and deep learning (DL) models is attracting increasing global interest in the field of ophthalmology. DL models are considered the current state-of-art among the AI technologies. In fact, DL systems have the capability to recognize, quantify and describe pathological clinical features. Their role is currently being investigated for the early diagnosis and management of several retinal diseases and glaucoma. The application of DL models to fundus photographs, visual fields and optical coherence tomography (OCT) imaging has provided promising results in the early detection of diabetic retinopathy (DR), wet age-related macular degeneration (w-AMD), retinopathy of prematurity (ROP) and glaucoma. In this review we analyze the current evidence of AI applied to these ocular diseases, as well as discuss the possible future developments and potential clinical implications, without neglecting the present limitations and challenges in order to adopt AI and DL models as powerful tools in the everyday routine clinical practice

    Clinical Applications of Artificial Intelligence in Glaucoma

    Get PDF
    Ophthalmology is one of the major imaging-intensive fields of medicine and thus has potential for extensive applications of artificial intelligence (AI) to advance diagnosis, drug efficacy, and other treatment-related aspects of ocular disease. AI has made impressive progress in ophthalmology within the past few years and two autonomous AIenabled systems have received US regulatory approvals for autonomously screening for mid-level or advanced diabetic retinopathy and macular edema. While no autonomous AI-enabled system for glaucoma screening has yet received US regulatory approval, numerous assistive AI-enabled software tools are already employed in commercialized instruments for quantifying retinal images and visual fields to augment glaucoma research and clinical practice. In this literature review (non-systematic), we provide an overview of AI applications in glaucoma, and highlight some limitations and considerations for AI integration and adoption into clinical practice

    The potential application of artificial intelligence for diagnosis and management of glaucoma in adults

    Get PDF
    BACKGROUND: Glaucoma is the most frequent cause of irreversible blindness worldwide. There is no cure, but early detection and treatment can slow the progression and prevent loss of vision. It has been suggested that artificial intelligence (AI) has potential application for detection and management of glaucoma. SOURCES OF DATA: This literature review is based on articles published in peer-reviewed journals. AREAS OF AGREEMENT: There have been significant advances in both AI and imaging techniques that are able to identify the early signs of glaucomatous damage. Machine and deep learning algorithms show capabilities equivalent to human experts, if not superior. AREAS OF CONTROVERSY: Concerns that the increased reliance on AI may lead to deskilling of clinicians. GROWING POINTS: AI has potential to be used in virtual review clinics, telemedicine and as a training tool for junior doctors. Unsupervised AI techniques offer the potential of uncovering currently unrecognized patterns of disease. If this promise is fulfilled, AI may then be of use in challenging cases or where a second opinion is desirable. AREAS TIMELY FOR DEVELOPING RESEARCH: There is a need to determine the external validity of deep learning algorithms and to better understand how the 'black box' paradigm reaches results
    • …
    corecore