155 research outputs found

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Joint user scheduling, precoder design, and transmit direction selection in MIMO TDD small cell networks

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.New short-length single-direction frame structures are proposed for 5G time division duplex (TDD) systems, where the transmit direction [i.e., either downlink (DL) or uplink (UL)] can be independently chosen at each cell in every frame. Accordingly, high flexibility is provided to match the per-cell DL/UL traffic asymmetries and full exploitation of dynamic TDD is allowed. As a downside, interference management becomes crucial. In this regard, this paper proposes a procedure for dynamic TDD in dense multiple-input multiple-output small cell networks, where the transmit direction selected per small cell (SC) is dynamically optimized together with the user scheduling and transmit precoding. We focus on the maximization of a general utility function that takes into account the DL/UL traffic asymmetries of each user and the interference conditions in the network. Although the problem is non-convex, it is decomposed thanks to the interference-cost concept and then efficiently solved in parallel. Simulation results show gains in DL and UL average rates for different traffic asymmetries and SC/user densities as compared to existing dynamic TDD schemes thanks to the proposed joint optimization. The gains become more significant when there is high interference and limited number of antennas.Peer ReviewedPostprint (author's final draft

    Cooperative Transmission Strategy Over Users’ Mobility for Downlink Distributed Antenna Systems

    Get PDF
    Previously, a scheme in [1] is proposed for the outdated channel state information (CSI) problem, for data transmission in time division duplex (TDD) systems. In user movement environment, the actual channel of data transmission at downlink time slot is different from the estimated channel due to channel variation. In this paper the effect of different user mobility on TDD downlink multiuser distributed antenna system is investigated. An efficient autocorrelation based feedback interval technique is proposed and updates CSI at less cost of the downlink time slots. In the proposed technique, the frequency of CSI feedback for different users is proportional to their speed. Cooperative clusters are formed to maximize sum rate where channel gain based antenna selection and user clustering based on SINR threshold is applied to reduce computational complexity. Numerical results show that sum rate superiority of the proposed scheme over the user mobility

    Adaptive Resource Allocation Strategies for Dynamic Heterogeneous Traffic in Td-cdma/Tdd Systems

    Get PDF
    The purpose of this study was to investigate the co-channel interference present in TD-CDMA/TDD systems and TDMA/TDD systems and propose methods to avoid the co-channel interference. Time Slot Opposing algorithm which avoids co-channel interference in TD-CDMA/D-TDD system is reviewed as part of background study. The interference scenarios in TDMA/D-TDD systems are then studied and methods to avoid co-channel interference are proposed. The algorithms are then tested using real Internet data traffic to obtain a realistic analysis. Based on the background research, an extended Max {SIR} algorithm is proposed to avoid co-channel interference in TDMA/D-TDD systems. This algorithm is a centralized dynamic channel allocation algorithm that uses information from all the cells in the system to avoid co-channel interference and increase the signal power-to-interference power outage probability ratio. The proposed algorithm is then applied to a TDMA/D-TDD system that have subscribers grouped based on priority. As a last step of the research, traffic in TDMA/D-TDD systems is modeled using the ON-OFF traffic modeling and the Max {SIR} algorithm is applied. The results obtained using ON-OFF traffic modeling matched with the results obtained using analytical simulations.School of Electrical & Computer Engineerin

    Multi-hop relaying networks in TDD-CDMA systems

    Get PDF
    The communications phenomena at the end of the 20th century were the Internet and mobile telephony. Now, entering the new millennium, an effective combination of the two should become a similarly everyday experience. Current limitations include scarce, exorbitantly priced bandwidth and considerable power consumption at higher data rates. Relaying systems use several shorter communications links instead of the conventional point-to-point transmission. This can allow for a lower power requirement and, due to the shorter broadcast range, bandwidth re-use may be more efficiently exploited. Code division multiple access (CDMA) is emerging as one of the most common methods for multi user access. Combining CDMA with time division duplexing (TDD) provides a system that supports asymmetric communications and relaying cost-effectively. The capacity of CDMA may be reduced by interference from other users, hence it is important that the routing of relays is performed to minimise interference at receivers. This thesis analyses relaying within the context of TDD-CDMA systems. Such a system was included in the initial draft of the European 3G specifications as opportunity driven multiple access (ODMA). Results are presented which demonstrate that ODMA allows for a more flexible capacity coverage trade-off than non-relaying systems. An investigation into the interference characteristics of ODMA shows that most interference occurs close to the base station (BS). Hence it is possible that in-cell routing to avoid the BS may increase capacity. As a result, a novel hybrid network topology is presented. ODMA uses path loss as a metric for routing. This technique does not avoid interference, and hence ODMA shows no capacity increase with the hybrid network. Consequently, a novel interference based routing algorithm and admission control are developed. When at least half the network is engaged in in-cell transmission, the interference based system allows for a higher capacity than a conventional cellular system. In an attempt to reduce transmitted power, a novel congestion based routing algorithm is introduced. This system is shown to have lower power requirement than any other analysed system and, when more than 2 hops are allowed, the highest capacity. The allocation of time slots affects system performance through co-channel interference. To attempt to minimise this, a novel dynamic channel allocation (DCA) algorithm is developed based on the congestion routing algorithm. By combining the global minimisation of system congestion in both time slots and routing, the DCA further increases throughput. Implementing congestion routed relaying, especially with DCA, in any TDD-CDMA system with in-cell calls can show significant performance improvements over conventional cellular systems

    Cooperative Transmission for Downlink Distributed Antenna in Time Division Duplex System

    Get PDF
    Multi-user distributed antenna system (MU-DAS) systems play the essential role in improving throughput performance in wireless communications. This improvement can be achieved by exploiting the spatial domain and without the need of additional power and bandwidth. In this thesis, three main issues which are of importance to the data rate transmission have been investigated. Firstly, user clustering in MU-DAS downlink systems has been considered, where this technique can be effciently used to reduce the complexity and cost caused by radio frequency chains, associated with antennas while keeping most of the diversity advantages of the system. The proposed user clustering algorithm which can select an optimal set of antennas for transmission. The capacity achieved by the proposed algorithm is almost same as the capacity of the optimum search method, with much lower complexity. Secondly, interference alignment in MU-DAS downlink systems has been studied. The inter-cluster interference is uncoordinated and limits the system performance. The inter-cluster interference should be eliminated or minimized carefully. The interference alignment is proposed to consolidate the strong inter-cluster interference into smaller dimensions of signal space at each user and use the remaining dimensions to transmit the desired signals without any interference. The performance of single cluster is better than the proposed algorithm due to the absence of intercluster interference in the single cluster. The numerical shows that the proposed algorithm is more suitable in multi-cell DAS environment due to the presence of inter-cell interference. Finally, the impact of different user mobility on TDD downlink MUDAS has been studied. The downlink data transmission in time division duplex (TDD) systems is optimized according to the channel state information (CSI) which is obtained at the uplink time slot. However, the actual channel at downlink time slot may be different from the estimated channel due to channel variation in mobility environment. Based on mobility state information (MSI), an autocorrelation based feedback interval adjustment technique is proposed. The proposed technique adjusts the CSI update interval and mitigates the performance degradation imposed by the user mobility and the transmission delay. Cooperative clusters are formed to maximize sum rate. In order to reduce the computational complexity, a channel gain based antenna selection and signal-to-interference plus noise ratio (SINR) based user clustering are developed. A downlink ergodic capacity is derived in single user clustering. The derived analytical expressions of the downlink ergodic capacity are verified by system simulations. Numerical results show that the proposed scheme can improved sum rate over the non cooperative system and no MSI knowledge. The proposed technique has good performance for a wide range of user speed and suitable for future wireless communications systems

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches
    corecore