900 research outputs found

    Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    Full text link
    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways it has led to a new philosophy towards how to create them. A practical guide is presented on how to generate astronomical images from research data with powerful image-processing programs. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. A philosophy is also presented on how to use color and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements which affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.Comment: 104 pages, 38 figures, submitted to A

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Test Targets 8.0: A Collaborative effort exploring the use of scientific methods for color imaging and process control

    Get PDF
    Publishing is both a journey and a destination. In the case of Test Targets, the act of creating and editing content, paginating and managing digital assets, represents the journey. The hard copy is the result or destination that readers can see and touch. Like the space exploration program, everyone saw the spacecraft that landed on the moon. It was the rocket booster that made the journey from the earth to the moon possible. This article portrays the process of capturing ideas in the form of digital data. It also describes the process of managing digital assets that produces the Test Targets publication

    Test Targets 3.1: A Collaborative effort exploring the use of scientific methods for color imaging and process control.

    Get PDF
    In general, test targets represent known values from an object or in a digital file, e.g., color patches, digital dots, lines with known dimensions, etc. The Macbeth ColorChecker is an analog target with 24 physical color patches. When captured by an input device and reproduced by an imaging system, we can compare tone and color relationships between the source target and its reproduction. On the other hand, the IT8.7/3 target is a digital file consisting of hundreds of patches with known CMYK digital values. When printed along side a signature, we can assess print quality quantitatively with the use of optical instruments and associated analysis techniques. - p. ii

    Study of time-lapse processing for dynamic hydrologic conditions

    Get PDF
    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies

    Computer mediated colour fidelity and communication

    Get PDF
    Developments in technology have meant that computercontrolled imaging devices are becoming more powerful and more affordable. Despite their increasing prevalence, computer-aided design and desktop publishing software has failed to keep pace, leading to disappointing colour reproduction across different devices. Although there has been a recent drive to incorporate colour management functionality into modern computer systems, in general this is limited in scope and fails to properly consider the way in which colours are perceived. Furthermore, differences in viewing conditions or representation severely impede the communication of colour between groups of users. The approach proposed here is to provide WYSIWYG colour across a range of imaging devices through a combination of existing device characterisation and colour appearance modeling techniques. In addition, to further facilitate colour communication, various common colour notation systems are defined by a series of mathematical mappings. This enables both the implementation of computer-based colour atlases (which have a number of practical advantages over physical specifiers) and also the interrelation of colour represented in hitherto incompatible notations. Together with the proposed solution, details are given of a computer system which has been implemented. The system was used by textile designers for a real task. Prior to undertaking this work, designers were interviewed in order to ascertain where colour played an important role in their work and where it was found to be a problem. A summary of the findings of these interviews together with a survey of existing approaches to the problems of colour fidelity and communication in colour computer systems are also given. As background to this work, the topics of colour science and colour imaging are introduced

    A Colorimetric investigation of soft proofing

    Get PDF
    The color proof has become one of the most important tools for quality control in the printing industry today3. Customers, publishers, separators, and printers depend upon its accuracy for indicating the quality of separations. The color proof is the most practical method for communicating how the color should appear and is easy to understand and use for comparison. The analog color proof is compared to the original to determine if the desired result has been achieved. The proof is sent to the customer to indicate how the image will appear when printed. If this proof is accepted, it is sent to the press room to indicate what is expected in the final reproduction. The color proof visually simulates how a set of films will print on the final production press with the production inks and stock. However, all too often, what is seen on the proof is not what the customer receives

    Test targets 5.0: A Collaborative effort exploring the use of scientific methods for color imaging and process control

    Get PDF
    Test Targets is about scholarship that intimately involves faculty and students in the process of writing and publishing. It is a collection if research papers that require collaborative effort over a time span of three academic quarters. Initially, students learned metrology, color management system, and the use of test targets for device optimization and process control. As time goes by, students are encouraged to identify research topics, formulate methodologies, and carry out experiments and data analyses in order to have specific findings. - p.

    Print engine color management using customer image content

    Get PDF
    The production of quality color prints requires that color accuracy and reproducibility be maintained to within very tight tolerances when transferred to different media. Variations in the printing process commonly produce color shifts that result in poor color reproduction. The primary function of a color management system is maintaining color quality and consistency. Currently these systems are tuned in the factory by printing a large set of test color patches, measuring them, and making necessary adjustments. This time-consuming procedure should be repeated as needed once the printer leaves the factory. In this work, a color management system that compensates for print color shifts in real-time using feedback from an in-line full-width sensor is proposed. Instead of printing test patches, this novel attempt at color management utilizes the output pixels already rendered in production pages, for a continuous printer characterization. The printed pages are scanned in-line and the results are utilized to update the process by which colorimetric image content is translated into engine specific color separations (e.g. CIELAB-\u3eCMYK). The proposed system provides a means to perform automatic printer characterization, by simply printing a set of images that cover the gamut of the printer. Moreover, all of the color conversion features currently utilized in production systems (such as Gray Component Replacement, Gamut Mapping, and Color Smoothing) can be achieved with the proposed system

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF
    corecore