31,197 research outputs found

    Evaluation of Classification Algorithms for Intrusion Detection System: A Review

    Get PDF
    Intrusion detection is one of the most critical network security problems in the technology world. Machine learning techniques are being implemented to improve the Intrusion Detection System (IDS). In order to enhance the performance of IDS, different classification algorithms are applied to detect various types of attacks. Choosing a suitable classification algorithm for building IDS is not an easy task. The best method is to test the performance of the different classification algorithms. This paper aims to present the result of evaluating different classification algorithms to build an IDS model in terms of confusion matrix, accuracy, recall, precision, f-score, specificity and sensitivity. Nevertheless, most researchers have focused on the confusion matrix and accuracy metric as measurements of classification performance. It also provides a detailed comparison with the dataset, data preprocessing, number of features selected, feature selection technique, classification algorithms, and evaluation performance of algorithms described in the intrusion detection system

    An efficient intrusion detection model based on hybridization of artificial bee colony and dragonfly algorithms for training multilayer perceptrons

    Get PDF
    One of the most persistent challenges concerning network security is to build a model capable of detecting intrusions in network systems. The issue has been extensively addressed in uncountable researches and using various techniques, of which a commonly used technique is that based on detecting intrusions in contrast to normal network traffic and the classification of network packets as either normal or abnormal. However, the problem of improving the accuracy and efficiency of classification models remains open and yet to be resolved. This study proposes a new binary classification model for intrusion detection, based on hybridization of Artificial Bee Colony algorithm (ABC) and Dragonfly algorithm (DA) for training an artificial neural network (ANN) in order to increase the classification accuracy rate for malicious and non-malicious traffic in networks. At first the model selects the suitable biases and weights utilizing a hybrid (ABC) and (DA). Next, the neural network is retrained using these ideal values in order for the intrusion detection model to be able to recognize new attacks. Ten other metaheuristic algorithms were adapted to train the neural network and their performances were compared with that of the proposed model. In addition, four types of intrusion detection evaluation datasets were applied to evaluate the proposed model in comparison to the others. The results of our experiments have demonstrated a significant improvement in inefficient network intrusion detection over other classification methods

    A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks

    Get PDF
    An intrusion detection system, often known as an IDS, is extremely important for preventing attacks on a network, violating network policies, and gaining unauthorized access to a network. The effectiveness of IDS is highly dependent on data preprocessing techniques and classification models used to enhance accuracy and reduce model training and testing time. For the purpose of anomaly identification, researchers have developed several machine learning and deep learning-based algorithms; nonetheless, accurate anomaly detection with low test and train times remains a challenge. Using a hybrid feature selection approach and a deep neural network- (DNN-) based classifier, the authors of this research suggest an enhanced intrusion detection system (IDS). In order to construct a subset of reduced and optimal features that may be used for classification, a hybrid feature selection model that consists of three methods, namely, chi square, ANOVA, and principal component analysis (PCA), is applied. These methods are referred to as “the big three.” On the NSL-KDD dataset, the suggested model receives training and is then evaluated. The proposed method was successful in achieving the following results: a reduction of input data by 40%, an average accuracy of 99.73%, a precision score of 99.75%, an F1 score of 99.72%, and an average training and testing time of 138% and 2.7 seconds, respectively. The findings of the experiments demonstrate that the proposed model is superior to the performance of the other comparison approaches.publishedVersio

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    Poseidon: a 2-tier Anomaly-based Network Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD

    Poseidon: a 2-tier Anomaly-based Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD

    Intrusion Detection in Mobile Ad Hoc Networks Using Classification Algorithms

    Full text link
    In this paper we present the design and evaluation of intrusion detection models for MANETs using supervised classification algorithms. Specifically, we evaluate the performance of the MultiLayer Perceptron (MLP), the Linear classifier, the Gaussian Mixture Model (GMM), the Naive Bayes classifier and the Support Vector Machine (SVM). The performance of the classification algorithms is evaluated under different traffic conditions and mobility patterns for the Black Hole, Forging, Packet Dropping, and Flooding attacks. The results indicate that Support Vector Machines exhibit high accuracy for almost all simulated attacks and that Packet Dropping is the hardest attack to detect.Comment: 12 pages, 7 figures, presented at MedHocNet 200
    corecore