58,168 research outputs found

    Direction-Projection-Permutation for High Dimensional Hypothesis Tests

    Full text link
    Motivated by the prevalence of high dimensional low sample size datasets in modern statistical applications, we propose a general nonparametric framework, Direction-Projection-Permutation (DiProPerm), for testing high dimensional hypotheses. The method is aimed at rigorous testing of whether lower dimensional visual differences are statistically significant. Theoretical analysis under the non-classical asymptotic regime of dimension going to infinity for fixed sample size reveals that certain natural variations of DiProPerm can have very different behaviors. An empirical power study both confirms the theoretical results and suggests DiProPerm is a powerful test in many settings. Finally DiProPerm is applied to a high dimensional gene expression dataset

    Parsimonious Kernel Fisher Discrimination

    No full text
    By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases

    "Virus hunting" using radial distance weighted discrimination

    Get PDF
    Motivated by the challenge of using DNA-seq data to identify viruses in human blood samples, we propose a novel classification algorithm called "Radial Distance Weighted Discrimination" (or Radial DWD). This classifier is designed for binary classification, assuming one class is surrounded by the other class in very diverse radial directions, which is seen to be typical for our virus detection data. This separation of the 2 classes in multiple radial directions naturally motivates the development of Radial DWD. While classical machine learning methods such as the Support Vector Machine and linear Distance Weighted Discrimination can sometimes give reasonable answers for a given data set, their generalizability is severely compromised because of the linear separating boundary. Radial DWD addresses this challenge by using a more appropriate (in this particular case) spherical separating boundary. Simulations show that for appropriate radial contexts, this gives much better generalizability than linear methods, and also much better than conventional kernel based (nonlinear) Support Vector Machines, because the latter methods essentially use much of the information in the data for determining the shape of the separating boundary. The effectiveness of Radial DWD is demonstrated for real virus detection.Comment: Published at http://dx.doi.org/10.1214/15-AOAS869 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore