26,964 research outputs found

    Use Case Point Approach Based Software Effort Estimation using Various Support Vector Regression Kernel Methods

    Full text link
    The job of software effort estimation is a critical one in the early stages of the software development life cycle when the details of requirements are usually not clearly identified. Various optimization techniques help in improving the accuracy of effort estimation. The Support Vector Regression (SVR) is one of several different soft-computing techniques that help in getting optimal estimated values. The idea of SVR is based upon the computation of a linear regression function in a high dimensional feature space where the input data are mapped via a nonlinear function. Further, the SVR kernel methods can be applied in transforming the input data and then based on these transformations, an optimal boundary between the possible outputs can be obtained. The main objective of the research work carried out in this paper is to estimate the software effort using use case point approach. The use case point approach relies on the use case diagram to estimate the size and effort of software projects. Then, an attempt has been made to optimize the results obtained from use case point analysis using various SVR kernel methods to achieve better prediction accuracy.Comment: 13 pages, 6 figures, 11 Tables, International Journal of Information Processing (IJIP

    An estimate of necessary effort in the development of software projects

    Get PDF
    International Workshop on Intelligent Technologies for Software Engineering (WITSE'04). 19th IEEE International Conference on Automated Software Engineering (Linz, Austria, September 20th - 25th, 2004)The estimated of the effort in the development of software projects has already been studied in the field of software engineering. For this purpose different ways of measurement such as Unes of code and function points, generally addressed to relate software size with project cost (effort) have been used. In this work we are presenting a research project that deals with this field, us'mg machine learning techniques to predict the software project cost. Several public set of data are used. The analysed sets of data only relate the effort invested in the development of software projects and the size of the resultant code. For this reason, we can say that the data used are poor. Despite that, the results obtained are good, because they improve the ones obtained in previous analyses. In order to get results closer to reality we should find data sets of a bigger size that take into account more variables, thus offering more possibilities to obtain solutions in a more efficient way.Publicad
    corecore